[FieldTrip] Non-parametric statistics for TFR data

Sanjeev Nara s.nara at bcbl.eu
Thu Apr 12 15:11:43 CEST 2018


Hello, 

I am trying to implement parametric test on TFR data. I have 20 participant's data with 4 different conditions. I am interested in compairing theses conditions. After preprocessing and TFR computation i have one variable with (subjects * channels * freq * time ). The tutorial given on the website is using ERF data. Can i use it for TFR as well. 


cfg = [];
cfg.channel     = 'MEG';
cfg.latency     = [0.3 0.7];
cfg.avgovertime = 'yes';
cfg.parameter   = 'avg';
cfg.method      = 'montecarlo';
cfg.statistic   = 'ft_statfun_depsamplesT'
cfg.alpha       = 0.05;
cfg.correctm    = 'no';
cfg.correcttail = 'prob';
cfg.numrandomization = 1000;
 
Nsub = 10;
cfg.design(1,1:2*Nsub)  = [ones(1,Nsub) 2*ones(1,Nsub)];
cfg.design(2,1:2*Nsub)  = [1:Nsub 1:Nsub];
cfg.ivar                = 1; % the 1st row in cfg.design contains the independent variable
cfg.uvar                = 2; % the 2nd row in cfg.design contains the subject number
 
stat = ft_timelockstatistics(cfg,allsubjFIC{:},allsubjFC{:})
 
% make the plot
cfg = [];
cfg.style     = 'blank';
cfg.layout    = 'CTF151_helmet.mat';
cfg.highlight = 'on';
cfg.highlightchannel = find(stat.mask);
cfg.comment   = 'no';
figure; ft_topoplotER(cfg, GA_FC)
title('Nonparametric: significant without multiple comparison correction')





Best regards 
Sanjeev


 
Sanjeev Nara
Predoctoral Researcher BCBL
www.bcbl.eu
https://sites.google.com/view/sanjeev-nara/
Tel: +34 943 309 300 (ext 314)
Legal disclaimer/Aviso legal/Lege-oharra: www.bcbl.eu/legal-disclaimer



More information about the fieldtrip mailing list