[FieldTrip] FDR correction of multiple cluster-based permutation tests

Ta Dinh, Son son.ta.dinh at tum.de
Tue Apr 3 11:05:51 CEST 2018

Dear FieldTrip list,

I would like to correct the results of multiple cluster-based permutation tests using FDR. This is obviously trivial when I have a single cluster for every single test. However, this does not happen in general. My biggest problem is when I have no cluster at all because I also don't have a p value then.
Is there a reasonable way to extract a p value from the cluster-statistics when no cluster can be found? I have thought about just using p = 1 in these cases, but that seems very arbitrary and intuitively wrong.
Can anybody think of a different way of FDR-correcting multiple cluster-based permutation tests?

Obviously, I could also just use Bonferroni to adjust the alpha level, but that is simply too restrictive in general. But maybe someone knows a different way of correcting for multiple comparisons for this case that is neither Bonferroni nor FDR?

Any help and/or references would be greatly appreciated!


Son Ta Dinh, M.Sc.
PhD student in Human Pain Research
Klinikum rechts der Isar
Technische Universität München
Munich, Germany
Phone: +49 89 4140 7664<tel:%2B49%2089%204140%207664>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.science.ru.nl/pipermail/fieldtrip/attachments/20180403/9a7582ba/attachment-0001.html>

More information about the fieldtrip mailing list