[FieldTrip] LCMV beamformer analysis: uncertainties
Anette Giani
anette.giani at tuebingen.mpg.de
Thu Jun 14 11:49:50 CEST 2012
Dear Fieldtrip users,
I am currently trying to localize averaged time courses of condion1 and
condition2 in 20 subjects using LCMV beamformer and to compare source
activity of both conditions statistically. However, results look suspicious
to me and I am wondering if I am doing things correctly. It will be of great
help if you could comment on some issues and check the parameters I am
using.
Things I am wondering about:
(1) doing cluster statistics I get 1 big cluster that is highly significant
(clusterstat: 6.5829e+006, prob: 0.0020) and includes all!! (but one) voxels
that are labeled as "inside". I tried to decrease the alpha level to 0.01,
but it didn't really help.
(2) How can I check the quality of alignment of the individual anatomicals?
So far I am just using ft_volumenormalise, hoping that alignment works well.
However, I am getting suspicious by the warning:
1377485 voxels are inside the brain of all subjects
2557673 voxels are inside the brain of some, but not all subjects
4551464 voxels are outside the brain of all subjects
Warning: marking only voxels inside the brain of all subjects as 'inside'
If MRI's would be aligned, why aren't inside voxels of all subjects
identical? How does the fact that voxels are not exactly aligned affect my
analysis?
Any comments & and ideas are welcome
Thank you so much for your help!!
Anette
--
PARAMETERS
%% Calculating the cross spectral density matrix
cfg = [];
cfg.covariance = 'yes';
cfg.channel = 'MEG';
cfg.removemean = 'no';
cfg.trials = cond1;
cfg.covariancewindow = [0.15 0.25];
tlckav_cond1 = ft_timelockanalysis(cfg, OrigSPMdata);
cfg.trials = cond2;
cfg.covariancewindow = [0.15 0.25];
tlckav_cond2 = ft_timelockanalysis(cfg, OrigSPMdata);
cfg.trials = [cond1 cond2];
cfg.covariancewindow = [0.15 0.25];
tlckav_combined = ft_timelockanalysis(cfg, OrigSPMdata);
%% lcmv beamformer using common filters
cfg = [];
cfg.method = 'lcmv';
cfg.lambda = '5%';
cfg.grid = grid;
cfg.grad = grad;
cfg.vol = vol;
cfg.lcmv.projectnoise = 'yes'; % necessary?
cfg.lcmv.lambda = '5%';
cfg.lcmv.keepfilter = 'yes';
cfg.lcmv.realfilter = 'yes';
sourceAll = ft_sourceanalysis(cfg, tlckav_combined)
cfg.grid.filter = sourceAll.avg.filter;
source_cond1 = ft_sourceanalysis(cfg, tlckav_cond1);
source_cond2 = ft_sourceanalysis(cfg, tlckav_cond2);
%% reslice
mri_re = ft_volumereslice([], mri2);
source_cond1.anatomy = mri_re.anatomy;
source_cond2.anatomy = mri_re.anatomy;
% interpolate
cfg = [];
cfg.units = 'mm';
cfg.downsample = 2; % taken from tutorial
cfg.parameter = 'avg.pow';
source_cond1_Int = ft_sourceinterpolate(cfg, source_cond1 , mri_re);
source_cond2_Int = ft_sourceinterpolate(cfg, source_cond2 , mri_re);
% normalise
cfg = [];
cfg.coordsys = 'ctf';
cfg.nonlinear = 'no';
source_cond1_Int_Norm = ft_volumenormalise(cfg, source_cond1_Int);
source_cond2_Int_Norm = ft_volumenormalise(cfg, source_cond2_Int);
--------------------------- STATISTICS
--------------------------------------------------------------------------
% merge all subject's data
cfg = [];
cfg.keepindividual = 'yes';
grandavg_cond1 = ft_sourcegrandaverage(cfg, sSub6_cond1, sSub8_cond1, . tbc
grandavg_cond2 = ft_sourcegrandaverage(cfg, sSub6_cond2, sSub8_cond2, . tbc
% -------------------------------------------------------------------------
% run statistics over subjects
cfg = [];
cfg.dim = grandavg_cond1.dim;
cfg.method = 'montecarlo';
cfg.statistic = 'depsamplesT';
cfg.parameter = 'pow';
cfg.correctm = 'cluster';
cfg.numrandomization = 500;
cfg.tail = 0;
cfg.alpha = 0.05;
cfg.clusteralpha = 0.05;
cfg.correcttail = 'alpha';
nsubj=length(grandavg_cond1.trial);
cfg.design(1,:) = [1:nsubj 1:nsubj];
cfg.design(2,:) = [ones(1,nsubj) ones(1,nsubj)*2];
cfg.uvar = 1;
cfg.ivar = 2;
stat = ft_sourcestatistics(cfg, grandavg_cond1, grandavg_cond2);
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.science.ru.nl/pipermail/fieldtrip/attachments/20120614/e678ced9/attachment-0001.html>
More information about the fieldtrip
mailing list