<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Menlo;
panose-1:2 11 6 9 3 8 4 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
p.p1, li.p1, div.p1
{mso-style-name:p1;
margin:0in;
margin-bottom:.0001pt;
font-size:8.5pt;
font-family:Menlo;
color:black;}
span.s1
{mso-style-name:s1;}
span.apple-converted-space
{mso-style-name:apple-converted-space;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="p1"><span class="s1">Hi FieldTrippers-<o:p></o:p></span></p>
<p class="p1"><span class="s1"><o:p> </o:p></span></p>
<p class="p1"><span class="s1">I have a somewhat simple question. I am running some statistics on source-localized frequency domain data across two groups of subjects. I would like to use the independent samples t-test statistic for cluster-based permutation
testing. However, the output in the command window when I run my code seems to disagree with what I am specifying. I’ve followed the tutorials closely on this to ensure I am doing the analysis appropriately.
<o:p></o:p></span></p>
<p class="p1"><span class="s1"><o:p> </o:p></span></p>
<p class="p1"><span class="s1">I am running the following:<o:p></o:p></span></p>
<p class="p1"><span class="s1"><o:p> </o:p></span></p>
<p class="p1"><span class="s1">cfg=[];<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.parameter='pow';<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.method='montecarlo';<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.statistic='indepsamplesT';<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.correctm='cluster';<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.clusteralpha=0.05;<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.clusterstatistic='maxsum';<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.tail=0; <o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.clustertail=0;<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.alpha=0.025;<o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.numrandomization=1000; <o:p></o:p></span></p>
<p class="p1"><span class="s1">cfg.design=[repmat(1,1,numel(cond_A)) repmat(2,1,numel(cond_B))]; %1=cond A, 2=cond B<o:p></o:p></span></p>
<p class="p1"><span class="s1">stat=ft_sourcestatistics(cfg,cond_A{:},cond_B{:});<o:p></o:p></span></p>
<p class="p1"><span class="s1"><o:p> </o:p></span></p>
<p class="p1"><span class="s1">The command window prints the following. Bolded are the items that seem misleading. I have not specified any connectivity analysis. Also, the bit talking about single-sample statistics leads me to believe that this is running
a single sample t-test where a set of observations is being contrasted against some expected mean value:<o:p></o:p></span></p>
<p class="p1"><span class="s1"><o:p> </o:p></span></p>
<p class="p1"><span class="s1">using "ft_statistics_montecarlo" for the statistical testing</span><o:p></o:p></p>
<p class="p1"><span class="s1"><b>using connectivity of voxels in 3-D volume</b></span><b><o:p></o:p></b></p>
<p class="p1"><span class="s1"><b>using "ft_statfun_indepsamplesT" for the single-sample statistics</b></span><b><o:p></o:p></b></p>
<p class="p1"><span class="s1">constructing randomized design</span><o:p></o:p></p>
<p class="p1"><span class="s1">total number of measurements </span><span class="apple-converted-space">
</span><span class="s1">= 33</span><o:p></o:p></p>
<p class="p1"><span class="s1">total number of variables</span><span class="apple-converted-space">
</span><span class="s1">= 1</span><o:p></o:p></p>
<p class="p1"><span class="s1">number of independent variables</span><span class="apple-converted-space">
</span><span class="s1">= 1</span><o:p></o:p></p>
<p class="p1"><span class="s1">number of unit variables </span><span class="apple-converted-space">
</span><span class="s1">= 0</span><o:p></o:p></p>
<p class="p1"><span class="s1">number of within-cell variables</span><span class="apple-converted-space">
</span><span class="s1">= 0</span><o:p></o:p></p>
<p class="p1"><span class="s1">number of control variables</span><span class="apple-converted-space">
</span><span class="s1">= 0</span><o:p></o:p></p>
<p class="p1"><span class="s1">using a permutation resampling approach</span><o:p></o:p></p>
<p class="p1"><span class="s1">computing a parametric threshold for clustering</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">Any tips anyone has would be very much appreciated!<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">Sara<o:p></o:p></span></p>
</div>
</body>
</html>