<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html;
      charset=windows-1252">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix">Dear Ravi,<br>
      <br>
      1) You can use the pure SimBio-code from <br>
      <a class="moz-txt-link-freetext" href="https://www.mrt.uni-jena.de/simbio/index.php/Main_Page">https://www.mrt.uni-jena.de/simbio/index.php/Main_Page</a><br>
      to treat WM anisotropy.<br>
      While it would in principle also be possible to use anisotropic
      conductivities with FieldTrip-SimBio, <br>
      this is currently not implemented using ft_prepare_headmodel.
      Johannes (in CC), who implemented <br>
      Fieldtrip-SimBio, answered a same question by Junjie Wu in March
      2018: <br>
      "Depending on your matlab skills and your available time, I could
      help you to give it a <br>
      try though. It should be possible with using some direct function
      calls instead of the high-level fieldtrip-functions."<br>
      <br>
      2) We recommend <br>
<a class="moz-txt-link-freetext" href="http://www.sci.utah.edu/~wolters/PaperWolters/2012/RuthottoEtAl_PhysMedBiol_2012.pdf">http://www.sci.utah.edu/~wolters/PaperWolters/2012/RuthottoEtAl_PhysMedBiol_2012.pdf</a><br>
      on individual data. I could imagine that an atlas does a
      reasonable job w.r.t. the main<br>
      bigger fiber tracts such as corpus callosum or pyramidal tracts,
      but that the finer details<br>
      in the cortices are individual. We always measure T1, T2 and DTI
      from each subject<br>
      and I personally do not have experience with such a group-level
      anisotropy compared <br>
      to the individual one. Might be interesting to hear from others
      what they think!?<br>
      <br>
      BR<br>
         Carsten<br>
      <br>
      <br>
      <br>
      Am 25.10.18 um 23:05 schrieb Ravi Mill:<br>
    </div>
    <blockquote type="cite"
cite="mid:BN4PR14MB059603BCC3645A4E117876C7B2F70@BN4PR14MB0596.namprd14.prod.outlook.com">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
      <div id="divtagdefaultwrapper" dir="ltr" style="">
        <p style="color:rgb(0,0,0);
          font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple
          Color Emoji","Segoe UI
          Emoji",NotoColorEmoji,"Segoe UI
          Symbol","Android Emoji",EmojiSymbols;
          font-size:12pt; margin-top:0px; margin-bottom:0px">
          Dear Fieldtrippers</p>
        <p style="color:rgb(0,0,0);
          font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple
          Color Emoji","Segoe UI
          Emoji",NotoColorEmoji,"Segoe UI
          Symbol","Android Emoji",EmojiSymbols;
          font-size:12pt; margin-top:0px; margin-bottom:0px">
          <br>
        </p>
        <p style="color:rgb(0,0,0);
          font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple
          Color Emoji","Segoe UI
          Emoji",NotoColorEmoji,"Segoe UI
          Symbol","Android Emoji",EmojiSymbols;
          font-size:12pt; margin-top:0px; margin-bottom:0px">
          I have applied the FEM simbio head modeling pipeline
          implemented in Fieldtrip to my EEG data. <span>My
            understanding is that this pipeline assumes isotropic
            conductivities for 5 head compartments (as specified by
            cfg.conductivity in ft_prepare_headmodel). </span>After
          reading some papers (e.g. Vorwerk et al 2014 <a
            href="https://doi.org/10.1016/j.neuroimage.2014.06.040"
            class="OWAAutoLink" id="LPlnk216235" previewremoved="true"
            moz-do-not-send="true">https://doi.org/10.1016/j.neuroimage.2014.06.040</a>),
          it seems like incorporating white matter conductivity
          anisotropy has a relatively small albeit significant effect on
          the source solution. I am interested in comparing FEM results
          when treating white matter as anisotropic. <span
            style="font-size:12pt">My questions are as follows:</span></p>
        <p style="color:rgb(0,0,0);
          font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple
          Color Emoji","Segoe UI
          Emoji",NotoColorEmoji,"Segoe UI
          Symbol","Android Emoji",EmojiSymbols;
          font-size:12pt; margin-top:0px; margin-bottom:0px">
          <span style="font-size:12pt"><br>
          </span></p>
        <ol style="margin-bottom:0px; margin-top:0px">
          <li style="">Is there a way to implement the FEM simbio head
            model whilst treating WM as anisotropic within Fieldtrip? If
            so, how would one do this (or are there any resources
            available that demonstrate this)?</li>
          <li style="">From previous papers and some simbio
            documentation (<a
href="https://www.mrt.uni-jena.de/simbio/index.php/SIMBIO/Releasenotes/Examples"
              class="OWAAutoLink" id="LPlnk493580" previewremoved="true"
              moz-do-not-send="true">https://www.mrt.uni-jena.de/simbio/index.php/SIMBIO/Releasenotes/Examples</a>)
            it seems like diffusion MRI data is required to calculate
            the WM conductivity for each individual subject. I only have
            T1 and T2 scans for my subjects. So would it be possible to
            use WM anisotropic information obtained from some kind of
            diffusion MRI group average/atlas instead (accepting some
            loss in subject-level precision)? If so, does such a group
            average/atlas exist?</li>
        </ol>
        <br>
        <p style="margin-top:0px; margin-bottom:0px">Any help would be
          greatly appreciated!</p>
        <p style="margin-top:0px; margin-bottom:0px"><br>
        </p>
        <p style="margin-top:0px; margin-bottom:0px">Thanks</p>
        <p style="margin-top:0px; margin-bottom:0px">Ravi</p>
        <br>
        <p style="color:rgb(0,0,0);
          font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple
          Color Emoji","Segoe UI
          Emoji",NotoColorEmoji,"Segoe UI
          Symbol","Android Emoji",EmojiSymbols;
          font-size:12pt; margin-top:0px; margin-bottom:0px">
          <span style="font-size:12pt"></span></p>
        <div>        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <pre class="moz-quote-pre" wrap="">_______________________________________________
fieldtrip mailing list
<a class="moz-txt-link-freetext" href="https://mailman.science.ru.nl/mailman/listinfo/fieldtrip">https://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a>
<a class="moz-txt-link-freetext" href="https://doi.org/10.1371/journal.pcbi.1002202">https://doi.org/10.1371/journal.pcbi.1002202</a>
</pre>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Prof. Dr.rer.nat. Carsten H. Wolters
University of Münster
Institute for Biomagnetism and Biosignalanalysis
Malmedyweg 15
48149 Münster, Germany

Phone: 
+49 (0)251 83 56904
+49 (0)251 83 56865 (secr.)

Fax: 
+49 (0)251 83 56874

Email: <a class="moz-txt-link-abbreviated" href="mailto:carsten.wolters@uni-muenster.de">carsten.wolters@uni-muenster.de</a>
Web: <a class="moz-txt-link-freetext" href="https://campus.uni-muenster.de/biomag/das-institut/mitarbeiter/carsten-wolters/">https://campus.uni-muenster.de/biomag/das-institut/mitarbeiter/carsten-wolters/</a></pre>
  </body>
</html>