<div dir="ltr">Hi Conny,<div><br></div><div>You're right in that the circumcenter function is missing from the fieldtrip suite itself, but fortunately it's there at the bottom of the same wiki page. ;) Just copy it into your editor and save it out to a preferred matlab path (so it gets prioritized over any version of cicumcenter that may be in matlab). </div><div><br></div><div>Best,</div><div>Arjen </div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Jun 21, 2017 at 1:10 AM, Conny Quaedflieg <span dir="ltr"><<a href="mailto:cornelia.quaedflieg@uni-hamburg.de" target="_blank">cornelia.quaedflieg@uni-hamburg.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div lang="DE" link="#0563C1" vlink="#954F72"><div class="m_2586959391592838593WordSection1"><p class="MsoNormal"><span lang="EN-US">Dear Fieldtrip users, <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US">I would like to add / regress out headmovement in my MEG data. <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">I found the nice wiki tutorial from fieldtrip: <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><a href="http://www.fieldtriptoolbox.org/example/how_to_incorporate_head_movements_in_meg_analysis" target="_blank">http://www.fieldtriptoolbox.<wbr>org/example/how_to_<wbr>incorporate_head_movements_in_<wbr>meg_analysis</a> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US">However, when running the code I get the following error message: <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">Undefined function 'circumcenter' for input arguments of type 'double'.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US">I checked my paths and circumcenter is in it. Though if I open it, I see the following code. <u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">%circumcenter Circumcenter of triangle or tetrahedron</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% CC = circumcenter(TR, TI) returns the coordinates of the circumcenter</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% of each triangle or tetrahedron in TI.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% TI is a column vector of triangle or tetrahedron IDs corresponding to</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% the row numbers of the triangulation connectivity matrix TR.ConnectivityList.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% CC is an m-by-n matrix, where m is of length(TI), the number of specified</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% triangles/tetrahedra, and n is the spatial dimension 2 <= n <= 3.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Each row CC(i,:) represents the coordinates of the circumcenter</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% of TI(i). If TI is not specified the circumcenter information for</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% the entire triangulation is returned, where the circumcenter associated</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% with triangle/tetrahedron i is the i'th row of CC.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">%</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% [CC RCC] = circumcenter(TR, TI) returns in addition, the corresponding</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% radius of the circumscribed circle/sphere. RCC is a vector of length</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% length(TI), the number of specified triangles/tetrahedra.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">%</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Example 1: Load a 2D triangulation and use the triangulation to compute the</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% circumcenters.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% load trimesh2d</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% % This loads triangulation tri and vertex coordinates x, y</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% trep = triangulation(tri, x,y)</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% cc = circumcenter(trep);</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% triplot(trep);</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% axis([-50 350 -50 350]);</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% axis equal;</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% hold on; plot(cc(:,1),cc(:,2),'*r'); hold off;</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% % The circumcenters represent points on the medial axis of the polygon.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">%</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Example 2: Direct query of a 3D triangulation created using delaunayTriangulation</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Compute the circumcenters of the first five tetrahedra.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% X = rand(10,3);</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% dt = delaunayTriangulation(X);</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% [cc rcc] = circumcenter(dt, [1:5]')</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">%</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% See also triangulation, triangulation.incenter, delaunayTriangulation.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen"> </span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Copyright 2008-2012 The MathWorks, Inc.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal" style="text-autospace:none"><span lang="EN-US" style="font-size:8.0pt;font-family:"Courier New";color:forestgreen">% Built-in function.</span><span lang="EN-US" style="font-size:12.0pt;font-family:"Courier New""><u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US">It seems to me that the real function is missing. Is this normal? Could this be the problem? <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">I googled circumcenter and found the function, though I am not sure whether this is doing what it should do. Besides it also doesn’t run when including the 3 coil variables (error messages: Error using circumcenter2 Too many input arguments.)<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">Help is really appreciated </span><span lang="EN-US" style="font-family:Wingdings">J</span><span lang="EN-US"> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">Best <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US">Dr. C. Quaedflieg, Hamburg University <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US">The code that I Found for circumcenter<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US"><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">function [ pc, r ] = circumcenter ( p, t )<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%*****************************<wbr>******************************<wbr>******************80<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%% CIRCUMCENTER computes the circumcenters of a set of triangles.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Discussion:<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% The circumcenter of a triangle is the circle which passes through<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% all three vertices of the triangle.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Licensing:<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% (C) 2004 Per-Olof Persson. <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% See COPYRIGHT.TXT for details.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Reference:<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Per-Olof Persson and Gilbert Strang,<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% A Simple Mesh Generator in MATLAB,<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% SIAM Review,<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Volume 46, Number 2, June 2004, pages 329-345.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Modified:<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% 11 June 2004<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Parameters:<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Input, real P(NP,2), the coordinates of a set of nodes.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Input, integer T(NT,1:3), a list of the nodes which make up each triangle<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% of a triangulation of the nodes in P.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Output, real PC(NT,2), the centers of the circumcircles.<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">% Output, real R(NT,1), the radii of the circumcircles.<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New"">%<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""> nt = size ( t, 1 );<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""><u></u> <u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""> pc = zeros ( nt, 2 );<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""> </span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">r = zeros ( nt, 1 );<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> for it = 1 : nt<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""><u></u> <u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> ct = t(it,:);<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> dp1 = p(ct(2),:) - p(ct(1),:);<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> dp2 = p(ct(3),:) - p(ct(1),:);<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> mid1 = ( p(ct(2),:) + p(ct(1),:) ) / 2;<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> mid2 = ( p(ct(3),:) + p(ct(1),:) ) / 2;<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> s = [ -dp1(2), dp2(2); dp1(1), -dp2(1) ] \ [ -mid1 + mid2 ]';<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> </span><span lang="NL" style="font-size:10.0pt;font-family:"Courier New"">cpc = mid1 + s(1) * [ -dp1(2), dp1(1) ];<u></u><u></u></span></p><p class="MsoNormal"><span lang="NL" style="font-size:10.0pt;font-family:"Courier New""> cr = norm ( p(ct(1),:) - cpc );<u></u><u></u></span></p><p class="MsoNormal"><span lang="NL" style="font-size:10.0pt;font-family:"Courier New""> <u></u><u></u></span></p><p class="MsoNormal"><span lang="NL" style="font-size:10.0pt;font-family:"Courier New""> </span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New"">pc(it,:) = cpc;<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> r(it,1) = cr;<u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> <u></u><u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New""> </span><span style="font-size:10.0pt;font-family:"Courier New"">end<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""><u></u> <u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New""> return <u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Courier New"">end<u></u><u></u></span></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><span style="font-family:"Myriad Pro",sans-serif;color:gray">Mit freundlichen Grüßen,<u></u><u></u></span></p><p class="MsoNormal"><span style="font-size:10.5pt;font-family:"Myriad Pro",sans-serif;color:gray"><u></u> <u></u></span></p><p class="MsoNormal"><span style="font-size:1.0pt"><u></u> <u></u></span></p><p class="MsoNormal" style="line-height:115%"><span><img border="0" width="280" height="71" id="m_2586959391592838593Bild_x0020_1" src="cid:image003.jpg@01D2EA76.8AF8FE20" alt="Unbenannt-1"></span><b><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f"><u></u><u></u></span></b></p><p class="MsoNormal" style="line-height:115%"><b><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">E-Mail</span></b><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">: </span><span><a href="mailto:cornelia.quaedflieg@uni-hamburg.de" target="_blank"><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">cornelia.quaedflieg@uni-<wbr>hamburg.de</span></a></span><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f"> <u></u><u></u></span></p><p class="MsoNormal" style="line-height:115%"><b><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">Tel.</span></b><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">: </span><span><a href="tel:+49%2040%2042838-5448" target="_blank"><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f">+49 40 42838-5448</span></a></span><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f"> <b>Website</b>: </span><span><a href="https://www.psy.uni-hamburg.de/arbeitsbereiche/kognitionspsychologie/personen/quaedflieg-conny.html" target="_blank"><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#66b0fb">Hyperlink</span></a></span><span style="font-size:10.5pt;line-height:115%;font-family:"Myriad Pro",sans-serif;color:#7f7f7f"><u></u><u></u></span></p><p class="MsoNormal"><u></u> <u></u></p></div></div><br>______________________________<wbr>_________________<br>
fieldtrip mailing list<br>
<a href="mailto:fieldtrip@donders.ru.nl">fieldtrip@donders.ru.nl</a><br>
<a href="https://mailman.science.ru.nl/mailman/listinfo/fieldtrip" rel="noreferrer" target="_blank">https://mailman.science.ru.nl/<wbr>mailman/listinfo/fieldtrip</a><br></blockquote></div><br></div>