<div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div><span style="font-size:12.8px">FieldTrippers,</span><br></div><div><div style="font-size:12.8px"><br></div><span style="font-size:12.8px">While analyzing my data for the annual Society for Neuroscience meeting, I developed a concern that was quickly validated by another poster (full abstract copied and linked below) focusing on the root of the problem: neural oscillatory power is not normally distributed across time, frequency, or space. The specific problem I had encountered was in baseline-correcting my experimental data, where, regardless of cfg.baselinetype, ft_freqbaseline depends on the mean power over time. However, I found that the distribution of raw power over time is so skewed that the mean was not a reasonable approximation of the central tendency of the baseline power, so it made most of my experimental data look like it had decreased power compared to baseline. </span><span style="font-size:12.8px">The more I think about it, the more I realize that averaging is everywhere in the way we analyze neural oscillations (across time points, frequency bins, electrodes, trials, subjects, etc.), and many of the standard statistics people use also rely on assumptions of normality. </span><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span style="font-size:12.8px">The most obvious solution for me was to log transform the data first, as it appears to be fairly log normal, and I always use log-scale visualizations anyway. Erik Peterson, middle author on the poster, agreed that this would at least "</span><span style="font-size:12.8px">restore (some) symmetry to the error distribution."</span><span style="font-size:12.8px"> </span><span style="font-size:12.8px">I used a natural log transform, sort of arbitrarily to differentiate from the standard decibel transform included in FieldTrip as cfg.baselinetype = 'db'. </span><span style="font-size:12.8px">The following figures compare the 2 distributions across several frequency bands (using power values from a wavelet spectrogram obtained from a baseline LFP recorded in rat prelimbic cortex). The lines at the top represent the mean +/- one standard deviation for each frequency band, and you can see how those descriptive stats are much more representative of the actual distributions in the log scale.</span></div><div style="font-size:12.8px"><span style="font-size:12.8px"><br></span></div><div style="font-size:12.8px"><span style="font-size:12.8px"><img src="cid:ii_iwiapot72_158e5749d54b5952" style="margin-right: 0px;"><br></span></div><div style="font-size:12.8px"><span style="font-size:12.8px">For my analysis, I also calculated a z-score on the log transformed power to assess how my experimental data compared to the variability of the noise in a long baseline recording from before conditioning, rather than a short pre-trial baseline period, since I find that more informative than any of FieldTrip's built-in baseline types. I'm happy to share the custom functions I wrote for this if people think it would be a useful addition to FieldTrip. I can also share more about my analysis and/or a copy of the poster, if anyone wants more detail - I just didn't want to make this email too big.</span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Mostly, I'm just hoping to start some discussion here as to how to address this. I searched the <a href="http://www.fieldtriptoolbox.org/development/zscores" target="_blank">wiki</a>, <a href="https://mailman.science.ru.nl/pipermail/fieldtrip/2006-December/000773.html" target="_blank">listserv</a> <a href="https://mailman.science.ru.nl/pipermail/fieldtrip/2010-March/002718.html" target="_blank">archives</a>, and <a href="http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1574" target="_blank">bugzilla</a> for anything related and came up with a few topics surrounding normalization and baseline correction, but only skirting this issue. It seems important, so I want to find out whether others agree with my approach or already have other ways of avoiding the problem, and whether FieldTrip's code needs to be changed or just documentation added, or what?</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Thanks for any insights,</div><div style="font-size:12.8px">Teresa</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><h1 class="gmail-m_-4943405488691602327gmail-m_-3539777104408754943gmail-m_8853517913334217492gmail-color-primary" style="margin:0px;font-family:"open sans",sans-serif;line-height:28px;color:rgb(45,163,189);font-size:24px;padding:0px;clear:both"><a href="http://www.abstractsonline.com/pp8/#!/4071/presentation/24150" target="_blank">271.03 / LLL17 - Neural oscillatory power is not Gaussian distributed across time</a></h1><div><dt style="line-height:20px;font-weight:bold;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px">Authors</dt><dd style="line-height:20px;margin-left:10px;margin-bottom:5px;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px"><b>*L. IZHIKEVICH</b>, E. PETERSON, B. VOYTEK; <br>Cognitive Sci., UCSD, San Diego, CA</dd><dt style="line-height:20px;font-weight:bold;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px">Disclosures</dt><dd style="line-height:20px;margin-left:10px;margin-bottom:5px;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px"> <b>L. Izhikevich:</b> None. <b>E. Peterson:</b> None. <b>B. Voytek:</b> None.</dd><dt style="line-height:20px;font-weight:bold;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px">Abstract</dt><dd style="line-height:20px;margin-left:10px;margin-bottom:5px;color:rgb(0,0,0);font-family:"open sans",sans-serif;font-size:14px">Neural oscillations are important in organizing activity across the human brain in healthy cognition, while oscillatory disruptions are linked to numerous disease states. Oscillations are known to vary by frequency and amplitude across time and between different brain regions; however, this variability has never been well characterized. We examined human and animal EEG, LFP, MEG, and ECoG data from over 100 subjects to analyze the distribution of power and frequency across time, space and species. We report that between data types, subjects, frequencies, electrodes, and time, an inverse power law, or negative exponential distribution, is present in all recordings. This is contrary to, and not compatible with, the Gaussian noise assumption made in many digital signal processing techniques. The statistical assumptions underlying common algorithms for power spectral estimation, such as Welch's method, are being violated resulting in non-trivial misestimates of oscillatory power. Different statistical approaches are warranted.</dd></div></div></div><span class="gmail-HOEnZb"><font color="#888888"><div><br></div>-- <br><div class="gmail-m_-4943405488691602327gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><font color="#0000ff"><font size="4"><font face="garamond, serif">Teresa E. Madsen, PhD</font><br></font><font face="garamond, serif">Research Technical Specialist: <i>in vivo </i>electrophysiology & data analysis</font></font></div><div dir="ltr"><font color="#0000ff"><font face="garamond, serif">Division of Behavioral Neuroscience and Psychiatric Disorders<br>Yerkes National Primate Research Center</font></font><div><font face="garamond, serif" color="#0000ff">Emory University<br></font><div><font face="garamond, serif" color="#0000ff">Rainnie Lab, NSB 5233<br>954 Gatewood Rd. NE<br>Atlanta, GA 30329</font></div><div><div><font face="garamond, serif" color="#0000ff"><a href="tel:(770)%20296-9119" value="+17702969119" target="_blank">(770) 296-9119</a></font><br></div></div></div><div><font face="garamond, serif" color="#0000ff"><a href="mailto:braingirl@gmail.com" target="_blank">braingirl@gmail.com</a></font></div><div><font face="garamond, serif" color="#0000ff"><div><a href="https://www.linkedin.com/in/temadsen" target="_blank">https://www.linkedin.com/in/<wbr>temadsen</a></div></font></div></div></div></div></div></div></div>
</font></span></div>
</div><br>
</div>