<div dir="ltr">As a followup, I'd like to note that there was a mistake in the multiplot code in my prior post (I had in that code 1,3,5 instead of 1,2,3 as my indices for the stat cell array), and the comment for zlim was not relevant (that was for when I was plotting powspctrm, since the data were freqbaselined).<div><br></div><div>Since the time I posted this, I've tried a few more things that have been somewhat successful. I have set frequency to [1 30], because gamma seemed to be very noisy and the data were bandpass filtered at [0.1 50]hz in the first place so I figured there would be no meaningful effect as high as 50hz. I have also played with the latency, testing a priori assumptions of the time window, as well as a general [0 1.8] window for TFR (and [0 1] window for ERP).</div><div><br></div><div>Finally, I have tried the analyses using the nonparametric permutation test, but without the cluster correction (and setting cfg.alpha to 0.05 as opposed to 0.025, for the cluster statistics). When I do just the permutation test, I get the effects that I was anticipating in both ERP and TFR. It's only when I add in the cluster correction that I get no significant effects.</div><div><br></div><div>Does anyone have an idea as to why this might be happening?</div><div><br>Best,</div><div><br></div><div>Max</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Apr 8, 2016 at 3:02 PM, Max Cantor <span dir="ltr"><<a href="mailto:Max.Cantor@colorado.edu" target="_blank">Max.Cantor@colorado.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi fieldtrippers,<div><br></div><div>I have two unrelated stats questions, but I figured I'd post them together:</div><div><br></div><div>1. I've run within subjects permutation statistics testing the difference between an anomaly and control condition for three different language conditions; preposition, morphosyntax, and semantics. The code is nearly identical for both my ERPs and TFRs, except that when I plot my ERPs with cfg.maskparameter = 'mask', cfg.parameter = 'stat', and cfg.maskalpha = 0.025, it seems to multiplot just fine, whereas when I try to do the same for the TFRs, my multiplotted plots are blank, but when I comment out the mask, the stat plots are fine. I'll attach the code, but is there something I'm doing obviously wrong? Also, am I correct that my maskalpha should correspond to my alpha, and not my cluster alpha?</div><div><br></div><div>This is the TFR code, but the ERP code is the exact same except for with timelocked data as the input and ft_timelockstatistics as the function.</div><div><br></div><div><div>cfg = [];</div><div>cfg.method = 'montecarlo';</div><div>cfg.statistic = 'depsamplesT';</div><div>cfg.correctm = 'cluster';</div><div>cfg.clusteralpha = 0.05;</div><div>cfg.clusterstatistic = 'maxsum';</div><div>cfg.minnbchan = 2;</div><div>cfg.neighbours = neighbours; </div><div>cfg.tail = 0;</div><div>cfg.clustertail = 0;</div><div>cfg.alpha = 0.025;</div><div>cfg.numrandomization = 1000;</div><div><br></div><div>nsubj = length(tot_tfr2_bl{1});</div><div>design = zeros(2,2*nsubj);</div><div>for i = 1:nsubj</div><div> design(1,i) = i;</div><div>end</div><div>for i = 1:nsubj</div><div> design(1,nsubj+i) = i;</div><div>end</div><div>design(2,1:nsubj) = 1;</div><div>design(2,nsubj+1:2*nsubj) = 2;</div><div><br></div><div>cfg.design = design;</div><div>cfg.uvar = 1;</div><div>cfg.ivar = 2;</div><div><br></div><div>% Anomaly vs Control</div><div>stat_tfr{1} = ft_freqstatistics(cfg, tot_tfr2_bl{1}{:}, tot_tfr2_bl{2}{:}); % Preposition</div><div>stat_tfr{2} = ft_freqstatistics(cfg, tot_tfr2_bl{3}{:}, tot_tfr2_bl{4}{:}); % Semantics</div><div>stat_tfr{3} = ft_freqstatistics(cfg, tot_tfr2_bl{5}{:}, tot_tfr2_bl{6}{:}); % Morphosyntax</div></div><div><div><br></div><div>This is the plotting code. Again, it is virtually the same for the ERPs except the non-stats configurations would be what makes sense for ERPs.</div><div><br></div><div>% Anomaly vs Control TFR stats multiplot</div><div><br></div><div>cfg = [];</div><div>cfg.xlim = [-0.2 1];</div><div>cfg.zlim = [-3 3]; % proportion from baseline</div><div>cfg.layout = [max_dir '/quickcap64.mat'];</div><div>cfg.maskparameter = 'mask';</div><div>cfg.parameter = 'stat';</div><div>cfg.maskalpha = 0.025;</div><div><br></div><div>ft_multiplotTFR(cfg, stat_tfr{1}); title('Preposition');</div><div>ft_multiplotTFR(cfg, stat_tfr{3}); title('Semantic');</div><div>ft_multiplotTFR(cfg, stat_tfr{5}); title('Morphosyntactic'); </div></div><div><br></div><div><br></div><div>2. The second question is about analyzing baselined vs unbaselined data. I've seen in the tutorials that there is a somewhat different method for analyzing trial vs baseline period. However, what I've done instead (for both ERP and TFR), is use the same within-subjects statistics as with anomaly vs control, except with the inputs being baselined vs unbaselined ERPs or TFRs, e.g. Baselined Preposition Anomaly vs Unbaselined Preposition Anomaly, etc. I understand that the proposed method and my method are not testing the same thing exactly, but is this a reasonable way of testing the effect of the baselining anyway?</div><div><br></div><div>Thanks,</div><div><br></div><div>Max</div><span class="HOEnZb"><font color="#888888"><div><div><br></div>-- <br><div><div dir="ltr"><div style="font-size:small"><div>Max Cantor<br></div>Graduate Student</div><div style="font-size:small">Cognitive Neuroscience of Language Lab</div><span style="font-size:small">University of Colorado Boulder</span><br></div></div>
</div></font></span></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><div style="font-size:small"><div>Max Cantor<br></div>Graduate Student</div><div style="font-size:small">Cognitive Neuroscience of Language Lab</div><span style="font-size:small">University of Colorado Boulder</span><br></div></div>
</div>