<div dir="ltr">Hi Arjen,<div><br></div><div>Thanks for your help. :-)</div><div><br></div><div>Best,</div><div>Lin</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Mar 8, 2016 at 8:28 AM, Arjen Stolk <span dir="ltr"><<a href="mailto:a.stolk8@gmail.com" target="_blank">a.stolk8@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hey Lin,<div><br></div><div>Overall the more data (i.e. covariance matrices) the spatial filter is constructed from the better it'll be able to describe the spatiotemporal patterns present in the data (cf. ERPs, being smoother with more averaging). The latter indeed may be condition-specific, and since I do not know anything about your conditions, I'll refrain from having an opinion there. :)</div><span class="HOEnZb"><font color="#888888"><div><br></div><div>Arjen</div></font></span></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">2016-03-07 16:16 GMT-08:00 Lin Wang <span dir="ltr"><<a href="mailto:wanglinsisi@gmail.com" target="_blank">wanglinsisi@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div>Hi Arjen,<br><br></div>Yes, it answers my question. Thank! :-)<br><br>Then a further question is: is it better to include as many trials as possible to have a good estimation of the covariance matrix (provided that the signals are good for all trials)?<br><br>For example, there are two experimental conditions, with 20 trials per condition. There are also 40 filler trials with a similar structure as the experimental conditions. In this case, can I combine all the conditions to build the common filter and then only compare the two experimental conditions later?<br><br></div>The cognitive processes might be different between the experimental conditions and the fillers, so I'm not sure whether combining them has any influence on the spatial filter.<br><br></div>Best,<br></div>Lin<br></div><div class="gmail_extra"><br><div class="gmail_quote"><div><div>On Tue, Mar 8, 2016 at 12:19 AM, Arjen Stolk <span dir="ltr"><<a href="mailto:a.stolk8@gmail.com" target="_blank">a.stolk8@gmail.com</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div><div dir="ltr">Hey Lin,<div><br></div><div>Provided that there are no systematic confounds (e.g. head position) across conditions, you could construct a common filter based on data from all conditions. I would leave any statistical comparison to after source-reconstruction.</div><div><br></div><div>Does that answer your question?</div><span><font color="#888888"><div>Arjen</div></font></span></div><div><div><div class="gmail_extra"><br><div class="gmail_quote">2016-03-07 1:51 GMT-08:00 Lin Wang <span dir="ltr"><<a href="mailto:wanglinsisi@gmail.com" target="_blank">wanglinsisi@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div>
<div dir="ltr">Dear community,
<div><br>
</div>
<div>I'm trying to do lcmv beamformer source analysis with a common filter for more than two conditions. I have a 2A (A1, A2) * 2B (B1,B2) design, and I am interested in both the main effect of A (A1 vs. A2) as well as the simple effects (A1B1 vs. A2B1 and
A1B2 vs. A2B2).</div>
<div><br>
</div>
<div>My question is how to build the common filter. I could combine all the four conditions to obtain a common filter for the contrast of A1 vs. A2. Then can I also use this common filter to compare A1B1 vs. A2B1? Or do I have to build a different common filter
(to combine the A1B1 and A2B1 conditions) for the contrast of A1B1 vs. A2B1?</div>
<div><br>
</div>
<div>Thanks for your help in advance!</div>
<div><br>
</div>
<div>Best,</div>
<div>Lin</div>
<div><br>
</div>
<div><br>
</div>
</div>
</div>
</blockquote></div><br></div>
</div></div><br></div></div>_______________________________________________<br>
fieldtrip mailing list<br>
<a href="mailto:fieldtrip@donders.ru.nl" target="_blank">fieldtrip@donders.ru.nl</a><br>
<a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip" rel="noreferrer" target="_blank">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a><br></blockquote></div><br></div>
<br>_______________________________________________<br>
fieldtrip mailing list<br>
<a href="mailto:fieldtrip@donders.ru.nl" target="_blank">fieldtrip@donders.ru.nl</a><br>
<a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip" rel="noreferrer" target="_blank">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a><br></blockquote></div><br></div>
</div></div><br>_______________________________________________<br>
fieldtrip mailing list<br>
<a href="mailto:fieldtrip@donders.ru.nl">fieldtrip@donders.ru.nl</a><br>
<a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip" rel="noreferrer" target="_blank">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a><br></blockquote></div><br></div>