<html><head><meta http-equiv="Content-Type" content="text/html charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div>Thanks Arjen,</div><div>Should I use ft_freqdescriptives to compute t descriptives for individual subjects, and then take that to group level instead of mean? If not, what are the other alternatives?</div><div>Thanks,</div><div>Raghavan</div><div><br></div><div><pre>Hi Raghavan, ft_regressconfound run on timelock data seems to return output with avg field. However, ft_regressconfound run on frequency data, does not return average. I see the avg field being removed. Is there a reason? >> Not intentionally, but not an issue either. You could still use ft_freqdescriptives to compute the average for you, but see my comment below. Question - Since ft_regressconfound outputs power spectrum of individual trials - 4D matrix (instead of average), can I simply re-average the power spectrum over trials to see the average power for that subject. Also, I need to run grand average (over subjects) before running statistics. I hope these steps does not distort the data. Please advise. >> Remember that the mean over trials is not affected by your clean-up of trial-by-trial variance due to head movement. Taking each subject's mean (unaffected) to the group level is an approach that will not benefit from your clean-up. In order to benefit from reduced trial-by-trial variance, you'll need a measure that depends on it, e.g. t-descriptive, neural activity-behavior correlation (for taking to the group level). Hope this helps, Arjen ----- Oorspronkelijk bericht -----
><i> Van: "Raghavan Gopalakrishnan" <<a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">gopalar.ccf at gmail.com</a>>
</i>><i> Aan: <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">fieldtrip at science.ru.nl</a>
</i>><i> Verzonden: Donderdag 20 februari 2014 22:12:28
</i>><i> Onderwerp: Re: [FieldTrip] regressconfound and frequency domain
</i>><i> Arjen,
</i>><i> Thanks, I reduced down the time resolution so computation can go
</i>><i> faster. Now, m y matrix looks like this
</i>><i> hpicomptimefreq =
</i>><i> label: {204x1 cell}
</i>><i> dimord: 'rpt_chan_freq_time'
</i>><i> freq: [1x56 double]
</i>><i> time: [1x375 double]
</i>><i> powspctrm: [4-D double]
</i>><i> cumtapcnt: [59x56 double]
</i>><i> cfg: [1x1 struct]
</i>><i> trialinfo: [59x1 double]
</i>><i> beta: [4-D double]
</i>><i> ft_regressconfound run on timelock data seems to return output with
</i>><i> avg field. However, ft_regressconfound run on frequency data, does not
</i>><i> return average. I see the avg field being removed. Is there a reason?
</i>><i> Question - Since ft_regressconfound outputs power spectrum of
</i>><i> individual trials - 4D matrix (instead of average), can I simply
</i>><i> re-average the power spectrum over trials to see the average power for
</i>><i> that subject. Also, I need to run grand average (over subjects) before
</i>><i> running statistics. I hope these steps does not distort the data.
</i>><i> Please advise.
</i>><i> Thanks,
</i>><i> Raghavan
</i>><i> Date: Wed, 19 Feb 2014 22:58:38 +0100 (CET)
</i>><i> From: "Stolk, A. (Arjen)" < <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">a.stolk at fcdonders.ru.nl</a> >
</i>><i> To: FieldTrip discussion list < <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">fieldtrip at science.ru.nl</a> >
</i>><i> Subject: Re: [FieldTrip] regressconfound and frequency domain
</i>><i> Message-ID:
</i>><i> < <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">2108167665.5423215.1392847118322.JavaMail.root at sculptor.zimbra.ru.nl</a>
</i>><i> >
</i>><i> Content-Type: text/plain; charset="utf-8"
</i>><i> Dear Raghavan, Good to hear it's working out for you. A short answer
</i>><i> would be 'no'. Reducing the size of your data matrix is likely going
</i>><i> to speed up computations. Your time resolution seems pretty high (1500
</i>><i> frequency estimations per single trial); do you need that many? Yours,
</i>><i> Arjen ----- Oorspronkelijk bericht -----
</i>><i> > Van: "Raghavan Gopalakrishnan" < <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">gopalar.ccf at gmail.com</a> >
</i>><i> > Aan: <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">fieldtrip at science.ru.nl</a>
</i>><i> > Verzonden: Woensdag 19 februari 2014 22:01:00
</i>><i> > Onderwerp: [FieldTrip] regressconfound and frequency domain
</i>><i> > Arjen,
</i>><i> > Thanks for answering all my previous questions. I was successfully
</i>><i> > able to incorporate head movements to my erf data. As I understand I
</i>><i> > have to do this separately for the time frequency data after keeping
</i>><i> > individual trials. I am interested in both beta and gamma bands
</i>><i> > [15:1:70]. my time frequency looks like this using wavelets,
</i>><i> > timefreq =
</i>><i> > label: {204x1 cell}
</i>><i> > dimord: 'rpt_chan_freq_time'
</i>><i> > freq: [1x56 double]
</i>><i> > time: [1x1500 double]
</i>><i> > powspctrm: [4-D double]
</i>><i> > cumtapcnt: [55x56 double]
</i>><i> > grad: [1x1 struct]
</i>><i> > elec: [1x1 struct]
</i>><i> > cfg: [1x1 struct]
</i>><i> > trialinfo: [55x1 double]
</i>><i> > After regressconfound
</i>><i> > hpicomptimefreq =
</i>><i> > label: {204x1 cell}
</i>><i> > dimord: 'rpt_chan_freq_time'
</i>><i> > freq: [1x56 double]
</i>><i> > time: [1x1500 double]
</i>><i> > powspctrm: [4-D double]
</i>><i> > cumtapcnt: [55x56 double]
</i>><i> > cfg: [1x1 struct]
</i>><i> > trialinfo: [55x1 double]
</i>><i> > beta: [4-D double]
</i>><i> > Regressconfound took about 1 hr and 30 mins, since its a huge matrix
</i>><i> > [55x204x56x1500]. I have 25 such blocks of data for 20 subjects. It
</i>><i> > will take an enoumous amount of time to process the data through
</i>><i> > regressconfound. Is there a workaround to make the processing faster
</i>><i> > or am I missing something. Any help would be of great help.
</i>><i> > Thanks,
</i>><i> > Raghavan</i></pre><div><br></div></div></body></html>