<div dir="ltr">Arjen,<div><br><div>Thanks for answering all my previous questions. I was successfully able to incorporate head movements to my erf data. As I understand I have to do this separately for the time frequency data after keeping individual trials. I am interested in both beta and gamma bands [15:1:70]. my time frequency looks like this using wavelets,</div>
<div><br></div><div><div>timefreq = </div><div><br></div><div style="text-align:left"> label: {204x1 cell}<br> dimord: 'rpt_chan_freq_time'<br> freq: [1x56 double]<br> time: [1x1500 double]<br>
powspctrm: [4-D double]<br> cumtapcnt: [55x56 double]<br> grad: [1x1 struct]<br> elec: [1x1 struct]<br> cfg: [1x1 struct]<br> trialinfo: [55x1 double]<br></div></div><div style="text-align:left">
<br></div><div style="text-align:left">After regressconfound</div><div style="text-align:left"><br></div><div style="text-align:left"><div>hpicomptimefreq = </div><div><br></div><div> label: {204x1 cell}</div><div>
dimord: 'rpt_chan_freq_time'</div><div> freq: [1x56 double]</div><div> time: [1x1500 double]</div><div> powspctrm: [4-D double]</div><div> cumtapcnt: [55x56 double]</div><div> cfg: [1x1 struct]</div>
<div> trialinfo: [55x1 double]</div><div> beta: [4-D double]</div></div><div style="text-align:left"><br></div><div style="text-align:left">Regressconfound took about 1 hr and 30 mins, since its a huge matrix [55x204x56x1500]. I have 25 such blocks of data for 20 subjects. It will take an enoumous amount of time to process the data through regressconfound. Is there a workaround to make the processing faster or am I missing something. Any help would be of great help.</div>
<div style="text-align:left"><br></div><div style="text-align:left">Thanks,</div><div style="text-align:left">Raghavan</div><div style="text-align:left"><br></div></div></div>