<div style="font-family: 'Times New Roman'; font-size: 16px;">Yes, you are right, that does exactely the same, when I got the angle of the CSD, now everything has perfect sense, sorry for my missunderstood.<br /><br />Bests,<br />Gabriel<br /><br /><span>El 23/05/13, <b class="name">Eelke Spaak </b> <eelke.spaak@donders.ru.nl> escribió:</span><blockquote cite="mid:CABPNLUpec0sp=o5TWDKcU-PgQqGa_ROVSQ73uWWJbkwMHtEotA@mail.gmail.com" class="iwcQuote" style="border-left: 1px solid #00F; padding-left: 13px; margin-left: 0;" type="cite"><div class="mimepart text plain">Dear Gabriel,<br /><br />If I am not mistaken, the classical formula in Lachaux et al. (1999)<br />Human Brain Mapping is PLV = 1/N * | sum(exp(i * theta(t,n))) | . This<br />is almost the same as the formula you mention, except, importantly,<br />that theta is the phase difference between two signals, so the angle<br />of the CSD, and *not* the imaginary part.<br /><br />Note furthermore that 1 * exp(i*angle(z)) is equal to z/abs(z) for any<br />complex z, and you see that the implementation computes the classical<br />formula.<br /><br />Hope this helps,<br />Best,<br />Eelke<br /><br />On 22 May 2013 19:36, Gabriel Gonzalez Escamilla <ggonesc@upo.es> wrote:<br />> Dear Fieldtrip experts,<br />><br />> I finally understood how fieltrip computes the plv, so, my last e-mail has<br />> no sense now. Given say this, I have one question:<br />><br />> I've followed the fieltrip implementation to compute the PLV, and found that<br />> it takes the CSD, and normalizes it for the amplitude of the replicates,<br />> this is to divide the csd by the absolute of the same csd, then makes an<br />> average of the normalized csd's, to finally take the absolute of the<br />> average-normalized-csd as the PLV. I think it can be summarized to<br />> something like, PLV = |E( csd/abs(csd) )|<br />><br />> I do not see the similarity with the clasical formula that appears in the<br />> papers PLV=| E{exp(i*I{X})} |, where I{X} is the imaginary of the<br />> cross-spectrum, and E|.| is the expected value; I cannot find the<br />> relationship between the implementation on fieltrip of the PLV and the<br />> formula on the papers.<br />><br />> Can anyone explain to me the relationship between the two approaches? or<br />> tell me the paper where it is explained?<br />><br />> Many thanks in advanced,<br />> Gabriel<br />> _______________________________________________<br />> fieldtrip mailing list<br />> fieldtrip@donders.ru.nl<br />> <a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip" target="_blank">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a><br />_______________________________________________<br />fieldtrip mailing list<br />fieldtrip@donders.ru.nl<br /><a href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip" target="_blank">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a><br /></div></blockquote></div><br />-- <br /><font size="3">--------------------------<br />PhD. student Gabriel González-Escamilla<br />Laboratory of Functional Neuroscience<br />Department of Physiology, Anatomy, and Cell Biology<br />University Pablo de Olavide<br />Ctra. de Utrera, Km.1<br />41013 - Seville<br />- Spain -<br /><br />Email: ggonesc@upo.es<br />http://www.upo.es/neuroaging/es/</font>