<div dir="ltr">Hi,<div><br></div><div>I have a 3 conditions, A, B, and C in my MEG data. Multivariate classification using selected sensors between conditions A and B, B and C, and A and C work beautifully with chance = 50%. I'm now curious whether I could run a classification of 3 conditions with chance = 33%. </div>
<div><br></div><div>ft_freqstatistics could take more than 2 frequency datasets as inputs, but ft_statistics_crossvalidate using +dmlt/svm.m seems to require 2 datasets (because it's using a linear kernel?). <br><div>
<br></div><div style>Does anyone have suggestions how I might go about it...?</div><div>Thanks in advance! Akiko<br clear="all"><div><br></div>-- <br><font><span style="font-family:arial,helvetica,sans-serif">Akiko Ikkai, Ph.D. <br>
Postdoctoral Fellow<br style="font-family:arial,helvetica,sans-serif"></span></font><font style="font-family:arial,helvetica,sans-serif" face="'PrimaSans BT,Verdana,sans-serif'">Department of
Psychological and Brain Sciences<br>Johns Hopkins University<br>Ames
Hall, 3400 N. Charles St.<br>Baltimore, MD 21218</font><br style="font-family:arial,helvetica,sans-serif"><br>
</div></div></div>