<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix">Hi Patrick,<br>
      <br>
      I think you have to write this yourself.  I never tried though, so
      maybe there is a way.<br>
      <br>
      It's a tricky thing to what you want, so I guess that's why it is
      not implemented. If you average for some time bins over less
      repetitions than for others, you get a weaker noise estimate,
      thereby any effects found or not found could be attributed to
      plain noise. Put in another way, depending on what analysis you
      are doing, you might get into trouble with your statistics because
      of different degrees of freedom per time bin. Also note that for
      frequency data, power has only positive values with a lower bound
      of zero, thus noise can only increase the power estimate and not
      cancel out (so more noise = more power), thus a difference in a
      later time bin between conditions might be explained by having
      lower df (fewer observations, more noise) in one condition than in
      the other, especially if power is greater in the condition with
      fewer observation.<br>
      <br>
      I would strongly suggest to throw out trials which do not reach
      your time of interest and process only these (i.e. throw out that
      one subject) unless you really know what you are doing. On the
      other hand as already mentioned, I never tried and never did this,
      so maybe there is some neat way to achieve what you want (you'd be
      probably notice, cause people would reply to this response rather
      fast).<br>
      <br>
      Best,<br>
      Jörn<br>
      <br>
      On 2/8/2013 12:06 PM, Jung, Patrick wrote:<br>
    </div>
    <blockquote
cite="mid:36E953F5321EB743AC6B338995A56D6304A9C84C@UM-EXCDAG-A01.um.gwdg.de"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      <meta name="Generator" content="Microsoft Word 14 (filtered
        medium)">
      <!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]-->
      <style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Balloon Text Char";
        margin:0cm;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
        {mso-style-priority:34;
        margin-top:0cm;
        margin-right:0cm;
        margin-bottom:0cm;
        margin-left:36.0pt;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
span.searchhit
        {mso-style-name:search_hit;}
span.BalloonTextChar
        {mso-style-name:"Balloon Text Char";
        mso-style-priority:99;
        mso-style-link:"Balloon Text";
        font-family:"Tahoma","sans-serif";}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri","sans-serif";}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
/* List Definitions */
@list l0
        {mso-list-id:686490312;
        mso-list-type:hybrid;
        mso-list-template-ids:-952700956 67698703 67698713 67698715 67698703 67698713 67698715 67698703 67698713 67698715;}
@list l0:level1
        {mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level2
        {mso-level-number-format:alpha-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level3
        {mso-level-number-format:roman-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:right;
        text-indent:-9.0pt;}
@list l0:level4
        {mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level5
        {mso-level-number-format:alpha-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level6
        {mso-level-number-format:roman-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:right;
        text-indent:-9.0pt;}
@list l0:level7
        {mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level8
        {mso-level-number-format:alpha-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level9
        {mso-level-number-format:roman-lower;
        mso-level-tab-stop:none;
        mso-level-number-position:right;
        text-indent:-9.0pt;}
ol
        {margin-bottom:0cm;}
ul
        {margin-bottom:0cm;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
      <div class="WordSection1">
        <p class="MsoNormal"><span lang="EN-GB">Hi Fieldtrippers, <o:p></o:p></span></p>
        <p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
        <p class="MsoNormal">To get a feeling of my data I want to
          visually inspect the data and look where are differences
          between the
          <span class="searchhit">conditions</span> <o:p></o:p></p>
        <p class="MsoNormal">by plotting the grand-averages of TFRs. <o:p></o:p></p>
        <p class="MsoNormal">By using <b><span style="color:black">ft_freqgrandaverage</span></b><span
            style="color:black"> I noticed that it gives back
            <b>NaN</b> <o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">if freq entries
            for one time bin are missing for one subject (n=28).
            <o:p></o:p></span></p>
        <p class="MsoNormal"><img id="Picture_x0020_3"
            src="cid:part1.00060304.02050208@donders.ru.nl" width="623"
            height="165"><span style="color:black"><o:p></o:p></span></p>
        <p class="MsoListParagraph"
          style="text-indent:-18.0pt;mso-list:l0 level1 lfo1"><!--[if !supportLists]--><span
            style="color:black"><span style="mso-list:Ignore">1.<span
                style="font:7.0pt "Times New Roman"">      
              </span></span></span><!--[endif]--><span
            style="color:black">sSTOP,                                                 
            2. cAC,                                                 3.
            diff<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span style="color:black">In my data with
            variable trial lengths, the shortest poststim time point is
            around 0.06 s in one condition (cAC) and in one subject<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">but I expect my
            effects around 0.1-0.35 s.<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">How can I
            overcome this problem? Is there a more appropriate fieldtrip
            function or do I have to write a special self-made Matlab
            code?<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span style="color:black">Here is an
            excerpt of my code:<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">GA_sSTOP =
            ft_freqgrandaverage(cfg, AllSubjMat_sSTOP{1,:});<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">% where
            AllSubjMat_sSTOP contains TFRs of all subjects in a <1x28
            cell><o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">GA_cAC =
            ft_freqgrandaverage(cfg, AllSubjMat_cAC{1,:});<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">GA_diff.powspctrm
            = (GA_sSTOP.powspctrm - GA_cAC.powspctrm) ./
            (0.5*GA_sSTOP.powspctrm + 0.5*GA_cAC.powspctrm);<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span style="color:black">Many thanks for
            your help!<o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span style="color:black">Cheers, <o:p></o:p></span></p>
        <p class="MsoNormal"><span style="color:black">Patrick<o:p></o:p></span></p>
        <p class="MsoNormal"><b><span style="color:black"><o:p> </o:p></span></b></p>
        <p class="MsoNormal"><span style="color:black"><o:p> </o:p></span></p>
        <p class="MsoNormal"><o:p> </o:p></p>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
fieldtrip mailing list
<a class="moz-txt-link-abbreviated" href="mailto:fieldtrip@donders.ru.nl">fieldtrip@donders.ru.nl</a>
<a class="moz-txt-link-freetext" href="http://mailman.science.ru.nl/mailman/listinfo/fieldtrip">http://mailman.science.ru.nl/mailman/listinfo/fieldtrip</a></pre>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Jörn M. Horschig
PhD Student
Donders Institute for Brain, Cognition and Behaviour 
Centre for Cognitive Neuroimaging
Radboud University Nijmegen 
Neuronal Oscillations Group
FieldTrip Development Team

P.O. Box 9101
NL-6500 HB Nijmegen
The Netherlands

Contact:
E-Mail: <a class="moz-txt-link-abbreviated" href="mailto:jm.horschig@donders.ru.nl">jm.horschig@donders.ru.nl</a>
Tel:    +31-(0)24-36-68493
Web: <a class="moz-txt-link-freetext" href="http://www.ru.nl/donders">http://www.ru.nl/donders</a>

Visiting address:
Trigon, room 2.30
Kapittelweg 29
NL-6525 EN Nijmegen
The Netherlands</pre>
  </body>
</html>