<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:Verdana;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-reply;
        font-family:"Verdana","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'>Dear Marcin,<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'>The statfun_depsamplesregrT calculates a T-statistic for regression coefficients that are calculated within each of the units-of-observation (typically, participants) obtained by regressing the subject-specific data (spatiotemporal, spatio-spectral, spatio-spectro-temporal) on some predictor variable that varies over the different conditions in which this participant has provided data (e.g., working-memory load, retention interval, luminance, contrast, etc). If you doubt the assumed linear relation between predictor variable and biological data, then you could write your own statfun_depsamplesrankcorr. To use this test statistic for cluster-based permutation inference, you need a threshold based on some reference distribution (which can be parametric, but must not be). <o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'>To get this statfun_depsamplesrankcorr running, you will probably have to take a look in the Fieldtrip code to see how the statistics framework is structured.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'>Best,<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'>Eric Maris<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Verdana","sans-serif";color:#1F497D'><o:p> </o:p></span></p><div style='border:none;border-left:solid blue 1.5pt;padding:0cm 0cm 0cm 4.0pt'><div><div style='border:none;border-top:solid #B5C4DF 1.0pt;padding:3.0pt 0cm 0cm 0cm'><p class=MsoNormal><b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'>From:</span></b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'> Marcin [mailto:m.leszczynski.m@googlemail.com] <br><b>Sent:</b> woensdag 21 maart 2012 10:51<br><b>To:</b> Email discussion list for the FieldTrip project<br><b>Subject:</b> [FieldTrip] statfun_depsamplesregrT<o:p></o:p></span></p></div></div><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Dear Fieldtripers,<br><br>Could anyone explain me what is being calculated with the statfun_depsamplesregrT function, please.<br><br>David Groppe (thank you David) suggested in a previous thread on the list that I might calculate permutation test based on rank correlation to account for monotonic relationships within the permutation framework. I was wondering if this is the kind of test that statfun_depsamplesregrT function calculates.<br><a href="http://mailman.science.ru.nl/pipermail/fieldtrip/2011-December/004578.html">http://mailman.science.ru.nl/pipermail/fieldtrip/2011-December/004578.html</a><br><br>Best,<br>Marcin<o:p></o:p></p></div></div></body></html>