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The current article proposes a bootstrap-F method and a bootstrap-T2 method for use in a
one-way repeated measure ANOVA design. Using a Monte Carlo approach in which
sample size, nonsphericity, and nonnormality are systematically manipulated, the Type I
error rate of the two bootstrap methods are compared to that of the traditional F test, the
Geisser-Greenhouse adjusted F test, the Box adjusted F test, the Huynh-Feldt adjusted F
test, the β-trimmed mean method using β = .1 and β = .2, and the one-sample multivariate
T2 test. Results show the bootstrap-F method controls Type I error better than all other
methods considered when normality and sphericity assumptions are violated
simultaneously.

When violations of the sphericity assumption occur in designs containing
repeated measures, particularly when compounded by nonnormality, the best
strategy for analysis is not entirely clear. As the sphericity assumption alone
becomes more severely violated, the traditional unadjusted within-subjects F
test is known to perform quite poorly, with its Type I error rate becoming ex-
tremely inflated (e.g., Lix, Keselman, & Keselman, 1994). Under such cir-
cumstances the researcher has a host of methodological alternatives.
Multivariate analyses, although not requiring sphericity, are dependent on
normality and apparently are quite sensitive to extreme skew (Harwell &
Serlin, 1997); they also are not particularly powerful with smaller sample
sizes. Among univariate approaches, a variety of alternatives do exist.
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One of these alternatives is a method using trimmed-means and
Winsorized (co)variances. However, in the one-way repeated measures
ANOVA, the trimmed means method tests a modified null hypothesis per-
taining to the equality of the population trimmed means across repeated mea-
sures, rather than the equality of the usual population means, which may ren-
der their use unacceptable in particular research scenarios. On the other hand,
some researchers (cf. Wilcox, 1997, 1998) have argued that researchers
should be more interested in trimmed means than in classical statistics
because results from these analyses are more robust and may therefore be
more accurate and replicable.

In the approach invoking either trimming, β-trimmed means are means
calculated from ordered data with the desired β proportion of data removed
from both the upper and lower tail of the distribution. Wilcox (1993) explored
the effects of nonnormality on the method trimmed-means, finding that
“inferences based on the trimmed mean can have substantially more power
[than inferences based on the traditional mean]” (p. 75). The current simula-
tion study includes an investigation of the behavior of two levels of
β-trimmed means, β = .1 and β = .2, under varied levels of nonnormality and
nonsphericity.

Another class of methods uses F distributions with degree of freedom (df)
adjustments to combat sphericity violations. In these methods the test associ-
ated with an a-level repeated measure for n cases is conducted using dfnumerator

= (a – 1) ε and dfdenominator = (a – 1)(n – 1) ε, where ε would ideally be the popu-
lation sphericity. Three approximations for this sphericity df adjustment
commonly offered in statistical software packages are the Geisser-Green-
house (GG) lower-bound adjustment (Geisser & Greenhouse, 1958), Box’s
(1954) �ε adjustment (which, curiously, the SPSS package refers to as “Green-
house-Geisser”), and the Huynh-Feldt (HF)~ε df adjustment (Huynh & Feldt,
1976). The GG lower-bound adjustment acknowledges that the worst possi-
ble population scenario would have ε = 1/(a – 1); thus the observed univariate
F statistic is compared to a conservative distribution with dfnumerator = 1 and
dfdenominator = n – 1. Box (1954) proposed the less conservative df adjustment �ε,
expressed by Maxwell and Delaney (1990) as

�
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where a is the number of levels of the repeated measure factor, E jk is an ele-
ment in row j and column k of the sample covariance matrix, E jj is the mean
of the diagonal entries (variances) in the sample covariance matrix, E j. is the
mean of the entries in the jth row of the sample covariance matrix, and E .. is
the mean of all entries in the sample covariance matrix. Finally, Huynh and
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Feldt (1976) proposed ~ε, a slightly less conservative modification of Box’s
statistic that is expressed by Maxwell and Delaney (1990) as
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Some authors (e.g., Keppel, 1991; Lomax, 1998) even discuss using these
df-adjusted methods in a more complex decision structure originally pro-
posed by Greenhouse and Geisser (1959), whereby the null hypothesis is
rejected only if the traditional unadjusted F, the GG lower bound, and Box’s �ε
yield collectively at least two null rejections. This strategy was designed to
minimize the need for computing Box’s cumbersome correction, except in
the case where the unadjusted F statistic rejects the null hypothesis and the
GG lower bound does not; only then would Box’s �ε be needed as a tie breaker.
However, given that Box’s approach is always more conservative than the
unadjusted F test and less so than the GG lower-bound correction, the reader
may verify logically that this complex decision strategy will always result in
the same conclusion as Box’s �ε alone. With current software packages pro-
viding Box’s �ε, then, the need to implement such a strategy becomes moot.

Unfortunately, the df-adjusted methods are only designed to withstand the
effects of nonsphericity; nonnormality, in addition to sphericity violations,
may lead to nonrobustness either in the form of liberalism or conservatism
(Tandon & Moeschberger, 1989), depending on the nature of the df adjust-
ment. Still, the principle behind the df-adjusted methods remains sound. Spe-
cifically, if the traditional distribution does not describe the behavior of the
test statistic of interest, one may find another distribution that does (in this
case, by adjusting the df). This statement is reminiscent of the premise behind
recent bootstrap resampling approaches attributed to Efron and colleagues
(e.g., Diaconis & Efron, 1983; Efron, 1979; Efron & Gong, 1983), whereby
an empirical sampling distribution for the test statistic of interest is derived
by repeatedly resampling (with replacement) from the sample at hand. These
methods have generally been shown to represent a promising new data analy-
sis paradigm, particularly when assumptions underlying traditional statisti-
cal methods are violated, or when evaluating statistics (e.g., either trimmed or
Winsorized means) for which sampling distributions are not known.
Lunneborg’s (2000) recent book provides a comprehensive summary of
some of these applications.

In the specific context of experimental designs, Westfall and Young
(1993) described a host of bootstrapping applications proposed to be more
robust than traditional ANOVA methodology. Unfortunately, these authors
provided little information regarding bootstrapped omnibus tests in repeated
measure designs. In addition, Lunneborg and Tousignant (1985) did propose
a method within the context of repeated measure designs; however, their
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approach assumed particular design matrices based on the quantitative nature
of the repeated measure variable and also was subsequently shown to be lib-
eral in its Type I error control (Rasmussen, 1987).

As described below, the purpose of the current study is (a) to propose boot-
strap resampling F and T2 procedures for the one-way repeated measure
design and (b) to evaluate the robustness of these procedures to sphericity and
normality violations. Using Monte Carlo methods to create varied
nonnormal and nonspherical conditions, the Type I error rates of the boot-
strap-F and bootstrap-T2 method will be compared to the Type I error rates of
the traditional one-sample multivariate T2 test, to the traditional unadjusted F,
to the β-trimmed mean method using β = .1 and β = .2, as well as to three
df-adjusted methods that, like the bootstrap, use alternate distributions to
judge an observed test statistic.

Method

Bootstrapping in a One-Way
Repeated Measure Design

For a design with n cases repeating all a levels of within-subjects factor A,
a score Yij in any of the n × a cells of the design may be represented as Yij = Y.j +
eij. That is, each score may be regarded as a case’s individual error within the
jth level of factor A added to the mean of that jth level, Y.j. Thus, the data for
the ith case may be expressed as a row vector [(Y.1 + ei1) (Y.2 + ei2)...(Y.a

+ eia)]. The data within the a levels exhibit particular distributional properties,
and the data across all levels have covariance matrix S where

S =
−
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The two bootstrap methods proposed in the current study, the bootstrap-F
and the bootstrap-T2, use the data from a given sample, which have distribu-
tional and sphericity properties that estimate (and behave as proxy for) those
of the population. To create a null condition in the sample data, centering is
performed whereby the mean of each jth level of the repeated measure is sub-
tracted from the cases’ data within that level. Thus, the data for the ith case
may now simply be expressed as a row vector [ei1 ei2 ... eia]. These centered
data within the a levels still exhibit the same distributional properties as the
original sample, and the centered data across all levels still have the same
covariance matrix S. The means of all a levels are now identical (in fact, all
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are 0), creating a null parent sample from which to conduct bootstrap
resampling.

In general, bootstrapping is conducted by randomly resampling (with
replacement) n-centered case vectors from the original n-centered case vec-
tors, generating a bootstrapped data set. From this bootstrapped data set,
omnibus test statistics are computed (an asterisk will indicate computations
to be performed on a bootstrapped data set). For the current study, the F* and
T2* statistics are computed for each bootstrapped data set, where F* =
MSA*/MSS × A*, and T2* = n yd*′ Sd*

–1 yd* (see Stevens, 1996). This process is
repeated b times to create empirical sampling distributions of F* and T2* val-
ues, generated under the original sample’s distributional and sphericity prop-
erties. To determine the p value for a bootstrap procedure, the test statistic for
the original sample (observed F or T2) is placed within the corresponding
empirical sampling F* or T2* distribution. The proportion of F* or T2* values
larger than the observed F or T2, respectively, represents the bootstrap p
value. This bootstrap p value is used to gauge the tenability of the omnibus
null hypothesis µ1 = µ2 = ... = µa. The Type I error robustness of these two
bootstrap methods to violations of sphericity and normality will be compared
to the original F and T2 tests’ performances, as well as to popular df-adjusted
methods using the following Monte Carlo simulation.

Monte Carlo Simulation

A Monte Carlo simulation was designed to investigate Type I error rate
robustness under the following factorially crossed conditions. Sphericity lev-
els were chosen as ε = 1.00, ε = .75, ε = .57, and ε = .48, thereby ranging from
perfect sphericity to a severe violation that would be considered within
“roughly the lower limits of values often reported in the behavioral literature”
(Quintana & Maxwell, 1994, p. 62). The population covariance matrices for
these levels of sphericity, which were used to guide data generation, are listed
in Table 1. Covariance matrices for the nonspherical conditions are the same
as in a study by Keselman and Keselman (1990). The population distribution
for all of the a levels of the repeated measure were set as normal (skew = 0,
kurtosis = 0), slightly nonnormal (skew = 1.00, kurtosis = 0.75), moderately
nonnormal (skew = 1.75, kurtosis = 3.75), and severely nonnormal (skew =
3.00, kurtosis = 21.00). Sample sizes investigated were n = 10, 15, 30, and 60.
For this study, the number of levels of the repeated measure was held constant
at a = 4, and a nominal error rate of α = .05 was adopted.

For each of the 4 × 4 × 4 = 64 cells of the design, 10,000 simulated data sets
(i.e., replications) were created in the software package GAUSS (Aptech
Systems, 1996) using methods based on the work of Fleishman (1978) and
Vale and Maurelli (1983); these methods are described in the next section.
For each simulated set of sample data, six of the nine tests were evaluated: the
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traditional one-sample T2, the traditional unadjusted F, the GG lower-bound
df-adjusted method, Box’s �ε approach, the HF ~ε corrected method, and the
currently proposed bootstrap-F. The decision to investigate the β-trimmed
means and the bootstrap-T2 was made after the previous six methods had
been evaluated, and thus different sample data were simulated from identical
populations for its investigation. Notwithstanding, the new 10,000 data sets
generated per cell for investigation of the β-trimmed means and the boot-
strap-T2 should yield results that may be compared with those of the previous
six methods.

For the nonbootstrap tests, p values were found using the appropriate ref-
erence distributions as contained within the GAUSS software package
(Aptech Systems, 1996). Bootstrap p values for the proposed methods were
determined as previously described, based on b = 5,000 bootstrapped sam-
ples of size n from that simulated data set.

A test of the omnibus null hypothesis was performed for each method: If
the p < .05, a rejection decision was recorded for that method on that replica-
tion. It should be noted that the bootstrap-T2* could not be computed for less
than 1% of bootstrapped data sets that had singular or near singular
covariance matrices; in such cases, to compute the T2* these problematic data
sets were replaced by new bootstrapped data sets where the determinant of
the covariance matrix was larger than .001. For all methods under all condi-
tions, then, the proportion of Type I errors was determined as the number of
false rejections out of 10,000 replications. As is commonly done, Bradley’s
(1978) liberal criterion was used to assess the robustness of each method
under each condition. According to this criterion, the test’s empirical Type I
error rate ( �α) must be contained in the interval .5α ≤ �α ≤ 1.5α to be considered
robust. Therefore, for the α = .05 level of statistical significance used in this
study, the interval used to define robustness was .025 ≤ �α ≤ .075.
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Table 1
Population Covariance Matrices for Target Sphericity Levels

ε = 1.00 ε = 0.75

10.0 5.0 5.0 5.0 18.0 8.0 6.0 4.0
5.0 10.0 5.0 5.0 8.0 8.0 5.0 4.0
5.0 5.0 10.0 5.0 6.0 5.0 7.0 3.0
5.0 5.0 5.0 10.0 4.0 4.0 3.0 7.0

ε = 0.57 ε = 0.48

23.2 11.8 7.4 2.4 22.3 10.8 6.5 1.9
11.8 10.3 5.3 1.7 10.8 8.3 5.2 3.1
7.4 5.3 4.3 1.4 6.5 5.2 4.7 2.5
2.4 1.7 1.4 2.2 1.9 3.1 2.5 4.7



Data Generation

Using GAUSS (Aptech Systems, 1996), data were simulated to conform
to each of the 16 sphericity and distributional condition combinations.
Multivariate normal and nonnormal data were generated via the algorithm
developed by Vale and Maurelli (1983), which is a multivariate extension of
the method for simulating univariate data proposed by Fleishman (1978).
Programming used in this study to generate simulated data has been scruti-
nized externally and verified for accuracy and is available to the general
research community (Nevitt & Hancock, 1999).

The above procedures yielded an n × 4 standardized data matrix whose
marginal distributions have univariate skew and kurtosis matching the target
distributional form and with the desired correlational structure (i.e., the stan-
dardized target covariance matrix). The final step in the data generation pro-
cess was to convert the correlational structure back to the covariance struc-
ture associated with the target level of sphericity. This was accomplished by
multiplying the n × 4 data matrix by a 4 × 4 diagonal matrix of standard devia-
tions, each element being the square root of a diagonal element from a given
population covariance matrix shown in Table 1.

As a final verification of the data generation mechanism, one simulated
data matrix was drawn from each of the 16 population conditions using a very
large sample size (n = 100,000). From each simulated 100,000 × 4 data
matrix, large sample estimates of skew and kurtosis were obtained for each of
the four column vectors in the data matrix. Unbiased estimates for skew and
kurtosis were computed using the Fisher g statistics (see, e.g., DeCarlo, 1997,
p. 301); a sample estimate of ε was also obtained for each of the large sample
data matrices. Results from these verification samples are extremely close to
the target population parameters, as presented in the appendix, leaving us
quite confident that the data generation mechanism yields simulated data that
conform closely to both the target distributional form and the target level of
sphericity.

Results

The empirical Type I error rates under all conditions for the two bootstrap-
ping approaches and the seven other tests appear in Table 2, whereas Table 3
contains each method’s number of cells in the design outside of Bradley’s
liberal robustness interval. These results in Table 3 are categorized into four
types of underlying populations: normal and spherical (4 cells), normal and
nonspherical (12 cells), nonnormal and spherical (12 cells), and nonnormal
and nonspherical (36 cells). It should be noted that the Type I error rates for
each condition were also evaluated separately using a 95% confidence inter-
val around each �α to determine if α = .05 was contained within the confidence
interval. Although some methods would be considered nonrobust using this
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Table 2
Empirical Type I Error Rates for Each Method Under All Conditions

.1- .2- Bootstrap- Bootstrap-
ε F HF Box GG Trimmed Trimmed T

2
F T

2

n = 10
skew = 0, kurt = 0

1.0 0.0486 0.0444 0.0348 0.0061
C

0.0379 0.0358 0.0473 0.0316 0.0072
C

.75 0.0657 0.0543 0.0410 0.0129
C

0.0491 0.0436 0.0460 0.0372 0.0070
C

.57 0.0802
L

0.0560 0.0452 0.0193
C

0.0542 0.0527 0.0469 0.0401 0.0070
C

.48 0.0893
L

0.0567 0.0484 0.0294 0.0552 0.0557 0.0493 0.0436 0.0074
C

skew = 1.00, kurt = 0.75
1.0 0.0495 0.0428 0.0304 0.0054

C
0.0344 0.0309 0.0460 0.0281 0.0049

C

.75 0.0721 0.0575 0.0444 0.0136
C

0.0580 0.0546 0.0564 0.0398 0.0091
C

.57 0.0897
L

0.0702 0.0606 0.0367 0.0860
L

0.0867
L

0.0782
L

0.0509 0.0130
C

.48 0.1056
L

0.0718 0.0630 0.0406 0.0853
L

0.0849
L

0.0636 0.0544 0.0108
C

skew = 1.75, kurt = 3.75
1.0 0.0458 0.0352 0.0234

C
0.0036

C
0.0253 0.0223

C
0.0361 0.0170

C
0.0030

C

.75 0.0740 0.0589 0.0461 0.0166
C

0.0651 0.0635 0.0609 0.0375 0.0087
C

.57 0.1135
L

0.0920
L

0.0804
L

0.0529 0.1300
L

0.1534
L

0.1141
L

0.0688 0.0226
C

.48 0.1153
L

0.0863
L

0.0763
L

0.0503 0.1060
L

0.1174
L

0.0895
L

0.0662 0.0153
C

skew = 3.00, kurt = 21.00
1.0 0.0329 0.0226

C
0.0147

C
0.0020

C
0.0193

C
0.0163

C
0.0297 0.0096

C
0.0018

C

.75 0.0643 0.0468 0.0364 0.0137
C

0.0590 0.0659 0.0532 0.0262 0.0043
C

.57 0.1318
L

0.1007
L

0.0883
L

0.0504 0.1565
L

0.2021
L

0.1196
L

0.0721 0.0177
C

.48 0.1144
L

0.0757
L

0.0667 0.0439 0.1113
L

0.1419
L

0.0849
L

0.0528 0.0126
C

n = 15
skew = 0, kurt = 0

1.0 0.0496 0.0473 0.0382 0.0048
C

0.0455 0.0358 0.0463 0.0364 0.0224
C

.75 0.0695 0.0578 0.0482 0.0166
C

0.0515 0.0472 0.0516 0.0466 0.0250
.57 0.0809

L
0.0551 0.0491 0.0245

C
0.0567 0.0570 0.0519 0.0472 0.0219

C

.48 0.0827
L

0.0490 0.0450 0.0299 0.0519 0.0530 0.0445 0.0433 0.0229
C

skew = 1.00, kurt = 0.75
1.0 0.0492 0.0443 0.0354 0.0054

C
0.0397 0.0341 0.0511 0.0338 0.0163

C

.75 0.0692 0.0564 0.0489 0.0189
C

0.0572 0.0574 0.0590 0.0467 0.0214
C

.57 0.0904
L

0.0651 0.0592 0.0345 0.0791
L

0.0927
L

0.0736 0.0532 0.0266
.48 0.0996

L
0.0622 0.0579 0.0378 0.0715 0.0812

L
0.0649 0.0524 0.0235

C

skew = 1.75, kurt = 3.75
1.0 0.0432 0.0351 0.0269 0.0053

C
0.0321 0.0299 0.0458 0.0230

C
0.0103

C

.75 0.0701 0.0551 0.0452 0.0180
C

0.0678 0.0837
L

0.0650 0.0410 0.0195
C

.57 0.1049
L

0.0831
L

0.0763
L

0.0489 0.1237
L

0.1841
L

0.1095
L

0.0653 0.0371
.48 0.1113

L
0.0789

L
0.0735 0.0499 0.1016

L
0.1442

L
0.0828

L
0.0650 0.0310

skew = 3.00, kurt = 21.00
1.0 0.0341 0.0231

C
0.0180

C
0.0028

C
0.0230

C
0.0198

C
0.0319 0.0114

C
0.0040

C

.75 0.0668 0.0482 0.0411 0.0165
C

0.0679 0.1033
L

0.0596 0.0310 0.0127
C

.57 0.1174
L

0.0937
L

0.0865
L

0.0547 0.1427
L

0.2458
L

0.1204
L

0.0760
L

0.0358
.48 0.1120

L
0.0768

L
0.0724 0.0494 0.1108

L
0.1794

L
0.0817

L
0.0621 0.0204

C

n = 30
skew = 0, kurt = 0

1.0 0.0481 0.0472 0.0438 0.0080
C

0.0434 0.0402 0.0473 0.0430 0.0380
.75 0.0613 0.0486 0.0440 0.0167

C
0.0495 0.0486 0.0507 0.0450 0.0372

.57 0.0764
L

0.0512 0.0487 0.0270 0.0498 0.0506 0.0485 0.0491 0.0367
.48 0.0826

L
0.0502 0.0492 0.0343 0.0521 0.0533 0.0522 0.0484 0.0433

skew = 1.00, kurt = 0.75
1.0 0.0525 0.0482 0.0435 0.0070

C
0.0433 0.0430 0.0522 0.0428 0.0367

.75 0.0661 0.0528 0.0479 0.0177
C

0.0649 0.0681 0.0559 0.0473 0.0390
.57 0.0874

L
0.0607 0.0579 0.0362 0.0942

L
0.1163

L
0.0648 0.0545 0.0416

.48 0.0899
L

0.0536 0.0511 0.0347 0.0823
L

0.0973
L

0.0552 0.0497 0.0400



approach in a few specific cells out of 64, the relative performance of the
methods overall was largely the same as that using Bradley’s liberal criterion;
for this reason, the additional results for the confidence intervals are not
reported here.

Preliminary general observations are as follows, created by averaging
information from Table 2. When averaged across sample sizes and distribu-
tional conditions, Type I error rates tend to become increasingly liberal as
nonsphericity increases, although it is interesting that all methods but the
unadjusted F and the GG df-adjusted F actually decrease slightly in Type I
error rate (on average) from ε = .57 to ε = .48, which may possibly be due to
the specific correlational structure used to create these levels of nonspheric-
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Table 2 Continued

.1- .2- Bootstrap- Bootstrap-
ε F HF Box GG Trimmed Trimmed T

2
F T

2

n = 30
skew = 1.75, kurt = 3.75

1.0 0.0466 0.0424 0.0378 0.0072
C

0.0371 0.0365 0.0462 0.0362 0.0271
.75 0.0664 0.0533 0.0495 0.0190

C
0.0844

L
0.1109

L
0.0576 0.0470 0.0379

.57 0.0944
L

0.0671 0.0637 0.0385 0.1662
L

0.2501 0.0809
L

0.0560 0.0456
.48 0.1042

L
0.0672 0.0645 0.0449 0.1280

L
0.1836

L
0.0673 0.0592 0.0408

skew = 3.00, kurt = 21.00
1.0 0.0425 0.0306 0.0261 0.0046

C
0.0294 0.0267 0.0413 0.0198

C
0.0123

C

.75 0.0686 0.0483 0.0452 0.0157
C

0.1083
L

0.1657
L

0.0603 0.0389 0.0225
C

.57 0.1095
L

0.0811
L

0.0783
L

0.0483 0.2106
L

0.3457
L

0.1052
L

0.0710 0.0493
.48 0.1056

L
0.0696 0.0673 0.0480 0.1602

L
0.2553

L
0.0826

L
0.0611 0.0315

n = 60
skew = 0, kurt = 0

1.0 0.0538 0.0528 0.0511 0.0109
C

0.0472 0.0460 0.0542 0.0516 0.0463
.75 0.0637 0.0478 0.0461 0.0187

C
0.0457 0.0450 0.0558 0.0479 0.0490

.57 0.0844
L

0.0538 0.0521 0.0300 0.0477 0.0464 0.0514 0.0530 0.0419
.48 0.0924

L
0.0537 0.0525 0.0370 0.0525 0.0544 0.0535 0.0532 0.0483

skew = 1.00, kurt = 0.75
1.0 0.0478 0.0462 0.0441 0.0078

C
0.0471 0.0436 0.0494 0.0443 0.0483

.75 0.0672 0.0521 0.0496 0.0204
C

0.0713 0.0830
L

0.0525 0.0496 0.0462
.57 0.0789

L
0.0523 0.0509 0.0282 0.1156

L
0.1544

L
0.0545 0.0497 0.0471

.48 0.0925
L

0.0562 0.0548 0.0382 0.0878
L

0.1104
L

0.0562 0.0540 0.0493
skew = 1.75, kurt = 3.75

1.0 0.0490 0.0454 0.0426 0.0071
C

0.0414 0.0397 0.0497 0.0431 0.0397
.75 0.0692 0.0550 0.0528 0.0185

C
0.1059

L
0.1580

L
0.0579 0.0519 0.0434

.57 0.0861
L

0.0587 0.0565 0.0358 0.2217
L

0.3648
L

0.0687 0.0528 0.0485
.48 0.0937

L
0.0555 0.0550 0.0397 0.1640

L
0.2563

L
0.0610 0.0510 0.0465

skew = 3.00, kurt = 21.00
1.0 0.0470 0.0393 0.0368 0.0081

C
0.0352 0.0355 0.0473 0.0330 0.0207

C

.75 0.0732 0.0549 0.0529 0.0207
C

0.1348
L

0.2411
L

0.0592 0.0484 0.0302
.57 0.0940

L
0.0654 0.0636 0.0409 0.2903

L
0.5217

L
0.0836

L
0.0591 0.0508

.48 0.0942
L

0.0580 0.0574 0.0405 0.2172
L

0.3922
L

0.0697 0.0542 0.0399

Note. HF = Huynh-Feldt adjusted F test; Box = Box adjusted F test; GG = Geisser-Greenhouse adjusted F test.
C. Conservative performance, denoting values that fall below the interval .025-.075 (Bradley’s criterion).
L. Liberal performance, denoting values that fall above the interval .025-.075 (Bradley’s criterion).



ity. Similarly, when averaged across sample sizes and sphericity conditions,
increased nonnormality tends to yield increased Type I error rates, although
from moderate to severe nonnormality some methods stabilize or decrease
slightly. Finally, when averaged across sphericity and normality conditions,
behavior seems to differ across methods. In general, all the methods except
the unadjusted F, GG, and both levels of the β-trimmed means performed
well with large sample sizes of n = 60. Each method will now be considered
individually.

Univariate Methods

The traditional unadjusted F behaves properly when conditions are nor-
mal and spherical. When nonnormality is introduced but sphericity is pre-
served, the F test still remains within the robustness interval. When normality
is preserved but nonsphericity is introduced, the Type I error rates become
systematically more liberal until in the two most extreme nonspherical cases
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Table 3
Frequencies of Cells (out of 64) Whose Type I Error
Rate Falls Outside Bradley’s Robustness Interval

Method Conservative Liberal Total Conservative Liberal Total

Normal/Spherical (4 cells) Nonnormal/Spherical (12 cells)

F 0 0 0 0 0 0
HF 0 0 0 2 0 2
Box 0 0 0 3 0 3
GG 4 0 4 12 0 12
.1-Trimmed 0 0 0 2 0 2
.2-Trimmed 0 0 0 3 0 3
T2 0 0 0 0 0 0
Bootstrap F 0 0 0 5 0 5
Bootstrap T2 2 0 2 8 0 8

Normal/Nonspherical (12 cells) Nonnormal/Nonspherical (36 cells)

F 0 8 8 0 24 24
HF 0 0 0 0 9 9
Box 0 0 0 0 6 6
GG 6 0 6 12 0 12
.1-Trimmed 0 0 0 0 27 27
.2-Trimmed 0 0 0 0 30 30
T2 0 0 0 0 13 13
Bootstrap F 0 0 0 0 1 1
Bootstrap T2 5 0 5 15 0 15

Note. Smaller values indicate better performance.



the unadjusted F becomes liberal under all sample sizes. Finally, under viola-
tions of both normality and sphericity, the results are identical to those for
sphericity alone: Only those cases with ε = .57 and ε = .48 show unacceptably
liberal control over Type I error.

As for the GG df-adjustment, under normal and spherical conditions it is,
not surprisingly, conservative in its control at all sample sizes. It remains sim-
ilarly conservative with the introduction of nonnormality when spherical
conditions are preserved. When nonsphericity is present but distributions are
normal, the performance of the GG method varies with ε and n. Specifically,
it is still conservative with ε = .75 under all sample sizes. In the more extreme
condition of ε = .57 the GG method returns to the confines of the robustness
interval given sufficient sample size (n = 30 and n = 60), whereas the smaller
sample size conditions are not able to overcome the conservatism. In the most
nonspherical condition, GG remains robust at any sample size. This may
seem counterintuitive, but remember that this method is a lower-bound cor-
rection assuming the worst possible sphericity condition—1/(4 – 1) or .3333
in this case. In all sphericity conditions investigated here, this correction is
technically too strong, but as sphericity approaches this lower bound level,
the error rate tends to lose its conservatism and rises into the robustness inter-
val. When nonnormality is coupled with nonsphericity, results are conserva-
tive under all distributions for all sample sizes when ε = .75; for more extreme
sphericity results are within the robustness interval under all distributions for
all sample sizes.

Considering Box’s �ε df-adjustment, it is neither conservative nor liberal
under normal and spherical conditions. When nonnormality is present for
spherical data, it becomes conservative only for the most extreme
nonnormality when n = 15 and for the two most extreme nonnormal condi-
tions when n = 10. On the other hand, when data are normal but sphericity is
violated, Box’s method was robust at all sphericity levels and sample sizes.
As for the combination of nonnormality and nonsphericity, this method is
robust under n = 60. With n = 30, the most nonnormal scenario produces a lib-
eral result with ε = .57, although it is interesting that the error rate drops back
into the robustness region as ε reaches the most extreme level of .48. For sam-
ple sizes of n = 15, liberal results are observed under the two most nonnormal
conditions with ε = .57; again, the method is robust at the most extreme ε =
.48. Finally, for n = 10 the two most extremely nonnormal conditions yield a
liberal result with ε = .57; curiously, only the less nonnormal of the two yields
liberal results in the ε = .48 case. It would appear that the relationship of dis-
tributional form and sphericity with Type I error rate is interactive and occa-
sionally nonmonotonic in nature.

The HF ~ε df-adjustment is also robust when normality and sphericity are
present. When data become nonnormal but spherical, HF remains robust
except under the most extreme nonnormal situations when n is as small as 15
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and 10, in which cases it becomes conservative. With normal data under
nonspherical conditions, HF remains completely robust under all sample
sizes and all sphericity conditions. When nonnormality and nonsphericity are
combined, results become considerably more complex. For the largest sam-
ple size, all results fall within the robustness interval. When n = 30, only the
most extreme nonnormality exhibits nonrobustness; specifically, ε = .57
yields liberal control, whereas the most extreme ε = .48 remains robust. For
both n = 15 and n = 10, the weakest nonnormal condition shows robustness at
all sphericity levels; with more extreme nonnormality, error rates become lib-
eral for all cases where ε = .57 and .48.

The results for the β-trimmed means are similar for the two levels, with the
.1-trimmed mean performing slightly better than the .2-trimmed mean.
Although neither is conservative nor liberal when the data are normal under
spherical and nonspherical conditions, when the data are nonnormal and
spherical the .1-trimmed mean statistic performs conservatively in the most
extreme nonnormal condition when n = 10 and n = 15. The .2-trimmed mean
performs conservatively under these conditions, and in addition, in the less
extreme nonnormal condition when n = 10. In the combined nonnormal and
nonspherical conditions, results are liberal for both levels of the β-trimmed
mean in the two most extreme nonspherical conditions across all levels of
nonnormality for n = 10. As sample size increases, the Type I error rates also
increase for the tests of these statistics. At n = 60, with the exception of the
.1-trimmed mean at ε = .75 at the lowest level of nonnormality, the
trimmed-mean statistics are liberal at all levels of nonnormality combined
with nonsphericity. The most extreme example is the .2-trimmed mean statis-
tic, which reaches a Type I error rate of more than 50% in the most nonnormal
condition with ε = .57.

The last of the methods based on the univariate F is the bootstrap-F
approach, which remains within the robustness interval at all sample sizes
when normality and sphericity are present. Error rates actually appear to
decline as n gets smaller, but they never fall below the defined limits of
robustness. With the introduction of nonnormality under spherical condi-
tions, results appear robust for the largest sample size of n = 60. When n = 30,
results for the most extreme nonnormality become conservative. For both of
the smallest sample sizes, error rates are conservative in the two most
nonnormal scenarios. If normality is preserved while nonsphericity is
increased, the bootstrap-F remains robust under all levels of ε and with all
sample sizes. Finally, with nonnormal and nonspherical data, the bootstrap-F
approach is robust under all conditions except for when it becomes liberal in
the most extreme distribution with n = 15 and ε = .57 (but not with a smaller
sample size or with worse sphericity). Given the previous result that
nonnormality alone can yield conservative results, the fact that additional
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nonsphericity seems to temper that nonrobustness may be indicative of a
complex interaction taking place between distributional form and sphericity.

Multivariate Methods

The traditional multivariate T2 test appears remarkably robust when data
are normal and/or spherical; that is, the violation of none or one of these con-
ditions does not yield a result outside the robustness interval for any sample
size. However, when nonnormality and nonsphericity are present, this
method quickly becomes one of the worst performing options investigated.
With the largest sample size n = 60, the most extreme nonnormality shows a
liberal result when ε = .57. When n = 30, liberal results are observed when ε =
.57 in the two most extremely nonnormal distributions, and when ε = .48 for
the most extremely nonnormal distribution. With sample size equal to 15, the
two most nonnormal distributions show liberal results for the two most
nonspherical conditions. And for the smallest sample size of n = 10, the same
pattern of results is observed as with n = 15 plus an additional liberal outcome
when the case of ε = .57 under the mildest nonnormal distribution.

The bootstrap-T2 method performs conservatively in its Type I error con-
trol when sample sizes are small. For n = 10, the bootstrap-T2 method is
extremely conservative under all conditions. In addition, between .1% and
1% of the bootstrapped samples need to be replaced due to near singular
covariance matrices for this small sample size. As sample size increases to n =
15, fewer than .01% of the bootstrapped samples needed replacement for any
condition. The bootstrap-T2 method performs more conservatively as the data
become more spherical, and it becomes more conservative as nonnormality
becomes more severe. These opposite effects lead to an interesting result
when n = 15 with the bootstrap-T2 appearing robust under combined moder-
ate to severe violations of both normality and sphericity, but performing con-
servatively in all the cases where the data are spherical (ε = 1.0), as well as
performing conservatively in the condition with the most severe violation of
both assumptions. When n = 30 or n = 60, none of the bootstrapped data sets
needed to be replaced, and the bootstrap-T2 method mostly performs within
Bradley’s robustness criterion. With these larger sample sizes, the boot-
strap-T2 is conservative for the most severely nonnormal condition when ε =
1.0 and ε = .75 for n = 30, and ε = 1.0 for n = 60. It was hoped that the boot-
strap-T2 would retain the positive attributes of T2 under nonnormal or
nonspherical conditions while offering greater robustness when both threats
are present. Such was not the case, as results show that the bootstrap-T2

method performs conservatively under most conditions.
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Conclusions

For a one-way repeated measure design with a levels, clearly no one pro-
cedure for testing H0: µ1 = ... = µa works well under all situations. The current
investigation, which included many combinations of sample size, distribu-
tional properties, and sphericity conditions, leads to the conclusion that a
repeated measure ANOVA should be preceded by more than just a test for
sphericity such as Mauchly’s test. Preparatory work should also include a test
for nonnormality (e.g., a Kolmogorov-Smirnov test). If neither violation
appears to be present, all but the GG and the bootstrap-T2 method seem to be
reasonable options. Perhaps the best alternatives are the traditional unad-
justed F or the one-sample multivariate T2, which take full advantage of the
assumptions of normality and sphericity. If a violation of sphericity occurs
alone, the HF, Box, T2, β-trimmed mean method, and bootstrap-F all appear
to offer reasonable Type I error control. If nonnormality occurs as the sole
violation, both the traditional F and multivariate T2 appear most robust (even
though they are technically dependent on the assumption of normality). If
violations of both normality and sphericity occur, the bootstrap-F method
seems to be far and away the most robust alternative, even with fairly small
sample sizes.

The above recommendations can be simplified further. If data are normal
and/or spherical, one may simply use a one-sample multivariate T2 test. If
data are neither normal nor spherical, the bootstrap-F method proposed
herein should be used. These suggestions are based solely on Type I error
control; further investigations examining the statistical power of methods
appearing to control Type I error satisfactorily could possibly temper these
recommendations. Notwithstanding, the bootstrap-F method appears quite
promising for testing data under the twin threats of nonnormality and
nonsphericity. Further research would be useful to extend the bootstrapping
approach to multifactor repeated measure designs as well as to split-plot
designs.
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Appendix
Summary Information for Simulated
100,000 × 4 Verification Data Matrix

Coefficient Target Estimate Target Estimate Target Estimate Target Estimate

skew 0.0000 –0.0071 0.0000 –0.0035 0.0000 0.0044 0.0000 0.0022
kurtosis 0.0000 0.0016 0.0000 0.0054 0.0000 –0.0098 0.0000 –0.0043
ε 1.0000 1.0000 0.7500 0.7483 0.5700 0.5662 0.4800 0.4791

skew 1.0000 1.0017 1.0000 1.0073 1.0000 1.0076 1.0000 1.0089
kurtosis 0.7500 0.7578 0.7500 0.7822 0.7500 0.7831 0.7500 0.7698
ε 1.0000 1.0000 0.7500 0.7497 0.5700 0.5665 0.4800 0.4777

skew 1.7500 1.7651 1.7500 1.7302 1.7500 1.7484 1.7500 1.7598
kurtosis 3.7500 3.8618 3.7500 3.5895 3.7500 3.7120 3.7500 3.8002
ε 1.0000 1.0000 0.7500 0.7448 0.5700 0.5690 0.4800 0.4797

skew 3.0000 3.1218 3.0000 3.0677 3.0000 3.0200 3.0000 2.8957
kurtosis 21.0000 22.5303 21.0000 22.7421 21.0000 20.3486 21.0000 20.0559
ε 1.0000 0.9999 0.7500 0.7543 0.5700 0.5688 0.4800 0.4774

Note. Skew and kurtosis estimates are averaged across simulated data from all four levels of the repeated mea-
sure (i.e., 400,000 pieces of data in each case), whereas the sphericity estimate is from the 4 × 4 covariance ma-
trix based on 100,000 cases.
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