Constructing a forward model for source localization of EEG data in the individual brain

Procedure

In short, the following steps can be taken:

1) Record 3D electrode positions and fiducial points.

2) Record structural MRIs (T1) of individual subjects.
3) For the convenience of later processing steps the MRIs should be aligned to SPM coordinate system (see FAQ: How are different head and mri coordinates defined?) and have isotropic voxels (e.g. 1*1*1 mm).
4) Get fiducial points in the MRI using e.g. the fieldtrip sourceplot.m function.
5) Create BEM model using the following example script (link to ‘BEM example script’):
- create brain, skull and skin compartments using volumesegment.m and image processing functions
- use these compartments as input for the prepare_bemmodel.m function
 (which uses the C-Program ‘Dipoli’, available upon request)
6) Save the resulting vol-structure.
7) Align individual electrode coordinates to the headmodel (e.g. in MNI space) according to exact fiducial points in anatomical MRI (link to example script ‘Align EEG electrode positions to BEM headmodel’).

8) Test the individual headmodel with simulated dipoles (link to example script ‘Compute forward simulated data and apply dipole fit’).

In order to use an individual boundary element model (BEM) for source localization of EEG activity, an anatomical MRI and the individual electrode positions of the same subject are needed. To align the headmodel and the electrode positions, it is necessary to know the location of fiducial points (e.g. nasion, left and right preauricular) in the MRI and the electrode position data.

The anatomical MRI should be isotropic (voxelsize is the same in the 3 dimensions) and have ideally voxel dimensions of 1*1*1 mm, this simplifies later processing. Importantly, the image should be roughly aligned to the MNI coordinate system (as used in SPM) with the y-axis pointing towards the nose and the x-axis pointing from left to right ear. If not recorded this way, these requirements can be achieved e.g. by using MRIcro (www.mricro.com, available for Linux and Windows). MRIcro is a freeware program which allows rendering the image isotropic, changing the size and switching the orientation of the image.
[image: image1.png](€]
Eile Edit Header Import View EOI Overlay Etc

Headelgsz: 17.76 Mo
Dimension Sze(mm) _ Origin(val)

~=lolx|

#f 2 [1 o 3
M EEND =
Zi7e 1 o =
Data_166itint (| iti-encian Intel

= e T O

e v
Wos Zv[is e

%5 fossotzsioes (@fossirorioos
sk et
oors

e Olole|agEdmn
Yo k[0 LR

Region of nterest

streteh 1| x1

130185

A boundary element model for EEG data consists of three shells: a brain, a skull and a skin compartment with different volume conductor properties. Firstly, the segmentation of the MRI into cerebrospinal fluid (csf), gray and white matter using volumesegment.m can serve as a starting point for constructing the brain compartment of the headmodel. Image processing functions (from the Matlab Image Processing Toolbox) can be used in order to fill holes, little gaps and erode dispensable edges. Secondly, to construct the skin compartment the intensity values of the skin at the edges of the image are used as a preliminary result and then the image is processed comparable to the brain compartment. And finally the skull compartment is constructed by blowing up the brain compartment and shrinking the skin compartment: the space where the two compartments overlap is used as a first approximation of the skull compartment, which can be further processed with the image functions. As a next step the surfaces are triangulated and the BEM system matrix is computed using the fieldtrip function prepare_bemmodel, which calls back to the C-Program ‘Dipoli’ (available upon request). The resulting vol-structure comprises the triangulated surface of the 3 compartments and the BEM system matrix, which has the size of the total number of vertices squared. The following script shows how the construction of the BEM model can be accomplished:
Create BEM model
% this script requires the triplot function, which both can

% be found in the private directory of fieldtrip. Futhermore, it requires

% the image processing toolbox for the segmentations, and the SPM2 toolbox

% for reading the example anatomical data.

% the dipoli stand-alone executable is available upon request

ResultFileName = 'BEMexample01';

% read the individual anatomical MRI

% which should be isotropic and have 1*1*1 mm voxels

% Interchange and flip dimensions to match the MNI format

% X left -> right

% Y back -> front

% Z bottom -> top

% load individual mri

mri = read_fcdc_mri('iso_example01.hdr')

% check mri with sourceplot([],mri)

% anatomical points determined from visual inspection of the mri

% voxel coordinates [dim1, dim2, dim3];

antcomm
= [123,159,89];

nasion
= [35,147,91];

left

= [133,79,13];

right
= [130,80,160];

% construct a segmentation of the brain, i.e. gray+white+csf

% these cannot be directly used for the BEM model, but serve as starting point

cfg = [];

cfg.smooth = 5;

cfg.name = [ResultFileName,'_temp'];

seg = volumesegment(cfg, mri); % answer 'y', 'a'

% due to a bug in volumesegment, the segmentations should be flipped

% in case of an CTF-oriented MRI, but not in case of an SPM-oriented one

% seg.gray = flipdim(flipdim(flipdim(seg.gray , 3), 2) ,1);

% seg.white = flipdim(flipdim(flipdim(seg.white, 3), 2) ,1);

% seg.csf = flipdim(flipdim(flipdim(seg.csf , 3), 2) ,1);

% the construction of the segmentations uses the image processing toolbox

% basically this requires a lot of trial-and-error, with "sourceplots" in
% between

% construct a segmentation of the brain compartment

brain = (seg.gray>0.5 | seg.white>0.5 | seg.csf>0.7);

s = strel_bol(5); % 3D sphere with specified radius for 3D image processing

brain = imclose(brain, s);

%brain = imopen(brain, s);

brain = imdilate(brain, strel_bol(2));

brain = imfill(brain, 'holes');

% check for different clusters

brain = bwlabeln(brain,26);

% unique(brain)

% volplot(brain)

brain(brain==2) = 0;

brain = brain~=0;

% construct a segmentation of the skin compartment

% estimate the maximal value for the space around the head

temp = mri.anatomy([1:3,end-2:end],:,:);

border = temp(:);

temp = mri.anatomy(:,[1:3,end-2:end],:);

border = [border;temp(:)];

temp = mri.anatomy(:,:,[1:3,end-2:end]);

border = [border;temp(:)];

 thresEstimate = prctile(border,98.5);

%thresEstimate = max(border)*1.5;

skin = (mri.anatomy>thresEstimate);

[skin,num] = bwlabeln(skin,26); % eliminates "selected" pixel that are in a cluster > 26 connected pixels

maxVal=max(skin(:));

for i=1:maxVal

 fprintf('%i/%i\n',i,maxVal)

 len(i)=length(find(skin==i));

end

[val,index]=sort(-len); val=-val;

index=index(1)

skin = (skin==index);

% close the ear holes

% skin(1:30,70:110,1:50) = mri.anatomy(1:30,70:110,1:50)>30;

% skin(150:181,70:110,1:50) = mri.anatomy(150:181,70:110,1:50)>30;

s = strel_bol(5);

skin = imclose(skin, s);

skin(:,:,1) = 1;

skin = imfill(skin, 'holes');

skin(:,:,1) = 0;

% Cut the neck (if necessary)
nCut = 60; % # of voxel to cut from the bottom

skin = skin(:,:,(nCut+1):end);

brain = brain(:,:,(nCut+1):end);

mri.anatomy=mri.anatomy(:,:,(nCut+1):end);

mri.zgrid = mri.zgrid(1:(end-nCut));

mri.transform(3,4) = mri.transform(3,4) + nCut*abs(mri.transform(3,3));

mri.antcomm(3) = mri.antcomm(3) - nCut;

mri.right(3) = mri.right(3) - nCut;

mri.left(3) = mri.left(3) - nCut;

mri.nasion(3) = mri.nasion(3) - nCut;

mri.nCut = nCut;

mri.dim = [size(mri.anatomy,1), size(mri.anatomy,2), size(mri.anatomy,3)];

% construct a segmentation of the skull compartment

s = strel_bol(4); % try 4-6

skin_a = imerode(skin, s);

s = strel_bol(6); % try 5-7

brain_a = imdilate(brain, s);

skull = (brain_a & skin_a);

% make figures of the segmentations, click around in the figures

volplot(skin .* mri.anatomy)

volplot(skull .* mri.anatomy)

volplot(brain .* mri.anatomy)

volplot(skin+skull+brain);

% add the BEM segmentation to the anatomical MRI for convenience

% skin = 1, skull = 2, brain = 3

mri.seg = skin+skull+brain;

% construct the triangulated surfaces and compute the BEM model

cfg = [];

cfg.tissue = [1 2 3]; % value of each tissue type in the segmentation

cfg.numvertices = [1000 2000 3000];

cfg.conductivity = [1 1/80 1];

cfg.isolatedsource = 3;

cfg.method = 'dipoli';

cfg.dipoli = DipoliPath/dipoli; % where to find the Dipoli executable

cfg.hdmfile = 'mri/example01/temp_hdm'; % where to write the temporary hdm files

vol = prepare_bemmodel(cfg, mri);

% make figures of the surfaces

figure; triplot(vol.bnd(1).pnt, vol.bnd(1).tri, [], 'faces_skin'); rotate3d

figure; triplot(vol.bnd(2).pnt, vol.bnd(2).tri, [], 'faces_skin'); rotate3d

figure; triplot(vol.bnd(3).pnt, vol.bnd(3).tri, [], 'faces_skin'); rotate3d

% write the BEM model to a matlab file, it can be later specified in

% sourceanalysis or dipolefitting as cfg.hdmfile='xxx.mat'

save(sprintf('%s.mat',ResultFileName),'vol','mri')

Plotting the mesh of the skin compartment and the surface of the brain compartment should look similar to this model.

[image: image2.jpg]

The next step is to align the electrode positions to the headmodel, if they are stored in different coordinate systems. It is necessary to provide the fiducial points in the individual MRI (e.g. nasion, right and left preauricular points) and in the recording of the 3D electrode positions.

The following script allows to use different methods to align the electrodes to the headmodel:

Align EEG electrode positions to BEM headmodel
% fit electrode coordinates to an individual MRI according to the same

% fiducials (nasion, left & right preauricular points) in both systems

% provide electrode coordinates, mri structure, and fiducials in mri

% convert electrode coordiantes from cm to mm

elec.pnt = elec.pnt * 10; % should be the same unit as MRI

vox2head = mri.transform; % transformation matrix of individual MRI

% provide fiducial coordinates in electrodespace

Nas = elec.pnt(strcmp(elec.label, 'nasion'),:);

Lpa = elec.pnt(strcmp(elec.label, 'left'),:);

Rpa = elec.pnt(strcmp(elec.label, 'right'),:);

% provide fiducials (in voxelspace, e.g. [57,127,15]) of individual MRI

% find fiducials e.g. by using sourceplot(cfg, mri) which plots a figure in which

% you can interactively select slices of the mri

vox_Nas = mri.nasion; % fiducials saved in mri structure

vox_Lpa = mri.left;

vox_Rpa = mri.right;

% transform voxel indices of individual MRI to headcoordinates in mm

head_Nas = warp_apply(vox2head, vox_Nas, 'homogenous'); % nasion

head_Lpa = warp_apply(vox2head, vox_Lpa, 'homogenous'); % Left preauricular

head_Rpa = warp_apply(vox2head, vox_Rpa, 'homogenous'); % Right preauricular

elec_mni.label = {'nasion', 'left', 'right'};

elec_mni.pnt = [

 head_Nas

 head_Lpa

 head_Rpa

];

cfg = [];

cfg.method = 'realignfiducial';

cfg.template = elec_mni;

cfg.elec = elec;

cfg.fiducial = {'nasion', 'left', 'right'};

elec = electroderealign(cfg);

cfg = [];

%cfg.method = 'rigidbody';

cfg.method = 'interactive';

cfg.elec = elec;

cfg.headshape = vol.bnd(1);

elec = electroderealign(cfg);

You should check whether electrode positions and headmodel are aligned. For this purpose you can use the fieldtrip headmodelplot function.
Plot headmodel and electrodes
cfg = [];

cfg.vol = vol;
cfg.elec = elec;

headmodelplot(cfg)

[image: image3.jpg]100

80

60

40

20

-0

-80

80

L

100

100

100

80

60

40

20

80

100

In order to test the forward model, you could use a simulated dipole, fit the dipole and plot it. The model is correct, if the dipole is found in the position where you simulated it. The following script simulates one dipole oscillating at 10 Hz.

Fit a simulated dipole

% simulate dipole in individual subject

% and apply dipole fit

% - load vol and mri(BEMxxx.mat)

% - load elec (xxx.pos)

% - align electrode coordinates with headmodel

% compute forward simulated data + apply diplole fit

cfg = [];

cfg.vol = vol;

cfg.elec = elec;

cfg.dip.pos = [5 2 3]; % pos of dipole in cm

cfg.dip.mom = [1 0 0]';

cfg.dip.frequency = 10;

cfg.ntrials = 10;

cfg.triallength = 1;

cfg.fsample = 250;

raw1 = dipolesimulation(cfg);

avg1 = timelockanalysis([], raw1);

figure, plot(avg1.time, avg1.avg);

cfg = [];

cfg.xparam = 'time';

cfg.zparam = 'avg';

cfg.xlim = [0.3 0.4];

figure, topoplotER(cfg, avg1)

% apply dipolefit

cfg = [];

cfg.vol = vol;

cfg.elec = elec;

cfg.dip.pos = [0 0 0];

cfg.gridsearch = 'no';

dip1 = dipolefitting(cfg, avg1);

cfg = [];

cfg.location = dip1.dip.pos *10;

figure, sourceplot(cfg,mri)

[image: image4.jpg]0s
200

150

100

50

15
50 100 150 0 0s 1

