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HE FIRST PAPER of this series (CHALLIS and KiTnEY, 1990)
ntroduced the reader to time-domain methods which
tould be applied to individual signals in order to estimate
heir basic properties. A signal recording was regarded in a

tistical sense as a sample from an underlying population
signal. In our second paper (CHaLLIS and KITNEY, 1991)

these ideas were extended to include the basic frequency-

main methods of signal description and comparison,

nd we reviewed the equivalence between signal operations
1 the time domain and corresponding manipulations in
he frequency domain. In this paper we develop the basic
Joncepts of CHALLIS and KiTNEY (1950) and (1991) and
sider in detail the classical methods of estimating a
gnal power spectrum. An impressive battery of appropri-
le computational techniques has been developed in the
ast by a number of workers in many different institu-
s; all of the methods are of necessity compromises in
dme form or another and are therefore prone to a range
[ uncertainties. We consider these in some detail, particu-
y in the context of the tradeoff between good
uency-domain resolution and problems of bias and
ariance in the frequency-domain estimates. We conclude
ur discussions in this paper with what might justifiably be

espondence should be addressed to R. E. Challis.
sceived 1st August 1989
MBE: 1891
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regarded as the piéce de resistance of the frequency-
domain methods—that is the coherence function as a
frequency-domain implementation of the idea of contin-
uous cross-correlation between two signals.

In the next and final paper of this series we introduce
the ideas of so-called modern spectral analysis and show
how these methods may sometimes be used in cases where
acceptable statistical compromises cannot be obtained
using classical methods.

2 The power spectrum

The power spectrum, or power spectral density function,
of a continuous time signal is defined as the square
modulus of the Fourier transform of the signal.

P(w) = F(w)F*w) = | Fw)|? (1

where P(w) is the power spectrum and F(w) the Fourier
transform. The amplitude of P{w) is always positive for a
real signal and it represents the signal power which exists
in the frequency interval w to w + dw. Power over a finite
frequency interval, w, to w, say, is obtained by integra-
tion, thus

1))

P(w,, @,) = f P(w) do (2)

wy

From a statistical viewpoint P(w) can be regarded as the
distribution in frequency space of the variance in the time-
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domain signal, an idea which follows from Parseval’s
theorem. Related to this is the Wiener-Khintchine theorem
which leads to an alternative definition of the power spec-
trum on the basis of the time-domain autocovariance func-
tion, defined as

1 Ti2
Selt) = fim = f [x(b) — X][x(t + 1) — X1 dt  (3)

T-ow ~Ti2

and the power spectrum is then

Plw) = f : S, e v dr 4

-

Both definitions of P(w) are valid and are exactly equiva-
fent for a continuous time signal of infinite duration. If it
were possible not only to record a signal of infinite dura-
tion, but also to calculate its power spectrum, we would
obtain a result which was totally reliable in a statistical
sense: there would be no uncertainties such as bias,
variance and limited resolution in our calculation.
However, in real situations we have data of limited dura-
tion and only finite time and computational resources to
apply to the calculation of power specira. We therefore
have to make estimates of the power spectra on the basis
of data recordings of finite duration, using the notion that
each finite length recording is in fact a sample taken from
an infinite duration recording. We regard this recording of
infinite duration as an underlying process known as the
population signal.

There are many different methods which can be used for
the estimation of power spectra; the performance of each
one is limited in the sense that the available resolution in
frequency space has some finite lower limit and that the
estimates themselves suffer from error due to bias and
variance which relate both to the manmner in which the
estimation is carried out and to the statistical properties of
the original data, reckoned to be a sample recording of the
population signal. The resolution, bias and variance are
frequently not independent of each other and some com-
promise between all three is normally, knowingly or
unknowingly, adopted by the investigator.

The methods available for special estimation fall into
two major groupings; the classical methods are generally
bascd on Fourier transformation in some form or another
and are the subject of this section of our tutorial. In con-
trast the methods of so-called modern spectral analysis are
based on the idea of fitting a system model to the data
followed by the evaluation of the spectral properties of the
model; these will form the basis of the final paper in this
series. The choice between the two groups of technique is
made on the basis of many inter-related factors, and is
often quite a complicated issue. It does however seem that
the most consistent reason for choosing modern methods
is in situations where the classical ones will not yield ade-
quate resolution for the signal at hand. In the sections of
this paper which remain we will discuss the main methods
of classical spectral analysis in the context of machine
computation of spectral estimates of one-dimensional
signals evenly sampled in time. This is representative of
very many of the analytical tasks which may face the bio-
engineer. Similar principles apply to the analysis of multi-
dimensional signals but an adequate discussion of these
would be of such complexity as to mask many of the
essential concepts we are trying to clarify in these tutorials.
We begin our discussion with a review of the frequency
resolution properties of the discrete Fourier transform
(DFT), as this algorithm is employed in most classical
methods of spectral estimation.
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3 Resolution of the DFT

We recall that the DFT is the name given to the calcu-
lation of FS coefficients for a discrete signal which is either
periodic or assumed to be periodic with a period equal to
the length of the recording we have for analysis. Calcu-
lation is most commonly achieved by means of the FFT
algorithm and data are organised so that the time-domain
recording which is input to the calculation consists of an
integer power of two samples in time with sampling inter-
val T,. The constraint of Nyguist’s theorem requires that
the original signal is band-limited so that no part of it
{including its noise) contains energy at frequencies greater
than 1/27,. In most practical situations the sampling fre-
quency is arranged to be at least four times the maximum
frequency contained in the input signal. For an N-point
input sequence an FFT operation yields as output a
frequency-domain sequence of N spectral lines, each of
which is a complex number corresponding to the complex
addition of real and imaginary paris of each spectral com-
ponent, analogously to the cosine and sine components of
the Fourier series. The frequency spacing between spectral
lines is 1/T where T is the duration of the time domain
record. This sets the frequency resolution of the FFT
method.

Clearly, the longer the duration of the input signal the
better will be the frequency resolution in the sense that the
interval between calculated spectral lines becomes smaller.
However, there are many limitations to the initial record-
ing length, the most obvious of which is that for a given
sampling frequency a long input recording may exceed the
available memory space in the computer employed for the
analysis. We now illustrate the resolution problem with a
few examples. ‘

The left hand side of Fig. 1 shows four time-domain
signals each consisting of 128 points. The first three are
single-frequency sinusoids and the bottom trace is the
summation of the first three. The right hand side of the
figure shows the corresponding FFTs; as we would expect
we see single spectral lines for the single-frequency traces
and all three lines present for the composite signal. Fig. 2
shows three different sinusoids consisting of 14, 34 and 5%
cycles together with their sum; the spectral representation
of these is indeed very confusing. Because one cycle in 128
points represents the minimum resolvable frequency inter-
val there is no position in the FFT output sequence which
could receive these components of (M + ) cycles in the
recording. The result is that their spectral energy is spread
into adjacent frequency positions in the FFT. The right
hand side of Fig. 2 shows this spread and downward-facing
arrows indicate the positions at which the components
would have turned up had a spectral line been available.
The bottom right hand trace on Fig. 2 illustrates just how
difficult it can be to discern the main spectral components
due to the limited resolution of the transform.

The phenomenon of spreading of spectral energy is of
course the leakage effect which we discussed in our pre:
vious paper of this series (CHaLLIs and KITNEY, 1990). The
resulting FFT is merely the circular convolution of the
‘true’ spectrum of the time-domain signal with the Fourier
transform of the window used to extract the signal from
the (notionally) infinitely long recording of which it is part.
In the case of Figs. 1 and 2 the data extraction windo
was of sampled rectangular form, M points long say. It
modulus Fourier transform is sin {wM/2)/sin @/2 and
consists of a series of lobes with zeros at intervals in o
2n/M. We recall that for a continuous signal the sam
effect would have occurred but the window in the fre
quency domain would have been of the form sin (7’
(wT/2). The positions of the zeros are the reason why {

May 199




lcu-
ther
lto
lcu-
FT
\ain
 an
ter-
that
f it
ater
fre-
U
oint
1t a
1 of
plex
Om-
s of
tral
nain
FET

the
 the
iler.
ord-
iven
| the
- the
th a

nain
. are

the
[ the
pect
aces
ig. 2
d 5%
tion
128
nter-
hich
| the
read
right
cing
1ents
able.
how
ients

is of
pre-
The
f the
urier
frora
part.
ndow
y. Tts
nd it
w of
same
> fre-
T/2)
y the

1991

ical & Biological Engineering & Computing

WC\\G/\
AWAWAWA

VAAVARY/

ANANN
VUV

/\/\/\ /;V/\/\

2 (a) Three single-frequency sinusoids which do not Jit exactly into one data recording. (b)
on either side of their ‘true’ spectral positions, marked with downward arrows

ig. 1 (a) Three single-frequency sinusoids of 128 samples each and their summation. (b ) The FFTs of each of the four time-domain
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Their FFTs indicate leakage of energy
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spectra on Fig. 1 appeared as we would have expected in
the absence of ieakage effects: the convolving window had
zeros at every possible spectral line position except the
centre one. With non-integer frequency components these
zeros locate between possible spectral line positions and
finite energy is spread to other spectral lines, as we have
seen.

The basic resolution of the FFT can be increased by
artificially increasing the length of the input recording by
adding zero value signal to it. This method is known as
zero padding and it is fllustrated in Fig. 3. The original
signal recording consists of two cycles in 128 data points,
and this has been stretched to 1024 points by the addition
of zeros. The FFT is then taken of this new 1024-point
recording; it has a frequency resolution commensurate
with its new recording length, the new interval between
spectral lines being &% = 4 times the original interval.

/| |

1000

] 500

U U

Fig. 3 The method of zero padding. The 128-point two-cycle sine
wave signal is stretched to 1024 data points by the addi-
tion of a sequence of zero-valued samples

The application of this technique to our basic sinusoidal
data is shown in Fig. 4. It is clear that resolution is
increased in that we have more spectral lines in a given
frequency interval. However, our ability to resolve particu-
lar frequency components is not much better than before
and the convolution of the ‘true’ spectrum with the fre-
quency domain window is clear. It is of course possible to
separate a time-domain recording from the (notionally)
long signal of which it is part by means of a window which
has smoother edges than the simple stepwise on/off of the
rectangular window. There are many such windows (see
for instance ELL10TT and Rao, 1982) and during the 1950s
and 1960s a popular subject for research was known as
‘window carpentry’! The most commonly known is the
so-called Blackman-Tukey (or Hanning) window which
weights an input signal recording with an inverted cosine
according to

2nn
=41 _ fakdide
w(n) 2( cos N)

forn=012 .., (N—-1) (5

When data are extracted with such a window the resulting
frequency transform again consists of the ‘true’ spectrum in
convolution with the Fourier transform of the window
shape. Now the Fourier transform of the inverted cosine
has a wider main lobe and much lower sidelobe ampli-
tudes than the frequency-domain window function which
corresponds to the rectangular data window. Fig. 5 shows
spectral calculations carried out on the same zero padded
sinusoidal data as before, only using the Hanning window
over the non-zero part of the signal. The resulting FFT
spectra show clearly the wider main lobe and lower side-
lobes. Also iflustrated is the possible ‘loss’ of a whole com-
ponent {the two-cycle one) due to signal distortion brought
about by the nonlinear windowing operation. It is also
clear from Fig. 5 (bottom trace) just how difficult it can be
to discern particular spectral components, even if they are
present in the transformed data. It would be in signal con-
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ditions such as these that one would turn to the technigues
of modern spectral analysis in order to separate closely
spaced signal components which are casily ‘losable’ with
Fourier methods.

4 The periodogram
The periodegram is an estimate of a signal power spec.
trum made on the basis of the modulus squared Fourier
transform. Notionally it takes the form of a histogram
whose bin width corresponds to the minimum resolvable
frequency interval in the Fourier transform operation. For
a discrete or line spectral plot based on a Fourier series
computation this interval would be 1/T, where T is the
duration of the recording extracted for analysis. The defini-
tion of the periodogram can include continuous spectra
based on the Fourier transform of a finite length signal; in
this case the notional histogram bin width is infinitesimally
small and equal to dw. The height of each bin is such that
the bin area (width x height) is equal to the estimated
spectral power in the corresponding frequency interval.
The area under the whole periodogram is of course equal
to the total estimated signal power. In practice we merely
assume the notion of the histogram and regard the perio-
dogram as the sequence of numbers corresponding to suc-
cessive bin heights. Other definitions of the periodogram
have been suggested from time to time and the interested
reader is referred to CHATFIELD {1984) for further dis-
cussion.
The Fourier transform of a discrete time signal of finite
length N is given by
N-1
X(w)= ), x(me i (6)

n=0

The periodogram is given by
Kow) = L X(w)|* T
®) = = | X(w)] uy

This function is continuous in frequency space and will -
form the basis of our discussion of the periodogram
method. It should be noted however that the majority of
classical spectral computations are presently achieved by
means of the FFT and the implication of this is that the
resulting periodogram I(k) will be a version of i)
sampled in frequency at intervals of w = k2m/N. Specifi-
cally, the DFT of x(n) is
N—-1
X(ky =Y x(nje Hnni¥) 8

n=0

and the discrete frequency periodogram is
1

= — 2 9

1) = 5 1X(0)] o)

The computational efficiency of the FFT has caused the
sampled periodogram to find great favour as an estimatot
for power spectral density. It does of course suffer from the
same limitation as the FFT in that the minimum resolv:
able frequency interval is 1/T Hz, where T is the original
recording duration; this limit is equivalent to the digital
frequency (2m/N) which appears in eqn. 15 of our previous:
paper (CHALL:S and KITNEY, 1991). The effectiveness. of the.
periodogram as an estimator of the underlying pow
spectrum is assessed in terms of the variance and bias
the resulting estimates. These are difficult to derive in
general form and the mathematics involved is beyond t
scope of this tutorial. The interested reader is referred
JENkINS and WatTts (1968) and to discussions
OppENHEIM and SCHAFER (1975) and CHATFELD (1984).

=
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shown on the right. (a) Integer number of periods; (b) integer + half number of periods
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hall summarise the principal results here and discuss their
implications for ‘day to day’ laboratory processing.

1 Variance of the periodogram

The simplest approach is to begin with a sampled time-
omain signal N points long, each sample of which is rep-
esentative of a wholly random process with a white
pectrum, zero mean and variance o2, The real and ima-
ginary components in the DFT are linear combinations of
hese samples and are also normally distributed and are
ndependent of each other. On the basis of this it can be
hown (JENkINs and WaTTs, 1968: QPPENHEIM and
CHAFER, 1975) that the variance of the periodogram
pproaches ¢2 as N approaches infinity.

var [(H{m)] = o (10)
It N—ow

here

var [x(n}] = o2

he corresponding analysis for a non-white signal is rather
ore complicated. OPPENHEIM and ScHAFER (1975) take
he approach that a non-white random sequence can be
enerated by starting with a random sequence and impos-
ng a linear filtering process upon it. They derive an
pproximate expression for the variance of the periodo-
~gram and show that, if the squared magnitude of the fre-
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quency response of the linear system is P, (), then
var [l(w)] = Pi(w) (11)
It N>

Thus as the recording length increases the variance of the
periodogram approaches the square of the power spectrum
value at cach frequency. This is a most important resulr. It
implies that the estimate I(w) does not improve as more
data points are brought into its calculation. Instead the
variance approaches a constant value and I{w) is thus not
a consistent estimator (CHALLIS and KiTNEY, 1950).

This property is perhaps to be expected when we
compare the calculation of I{w) with that of a consistent
estimating process such as evaluation of the mean value of
a sequence of numbers. The estimate of the mean improves
{variance decreases) as more data points contribute to the
single output quantity X. With the periodogram there is
not a single output quantity whose variance is to be con-
trolled. In the discrete case I{k) for example, N input data
contribute to the estimation of N spectral lines.

The outcome of the inconsistency in I{w) is that crude
periodograms tend to be rather jagged curves with strong
fluctuations about the true spectrum value. As a result the
curves become difficult to interpret or even meaningless in
some cases, and this may be true even when the data
contain a proportion of deterministic energy mixed with
random components. Fig, 6 illustrates the effect dramat-
ically. The problem can be overcome in part by controlling

8 6 Experiment to demonstrate the variability of the periodogram. A 2048-point near Gaussian sequence (mean = 0, SD = 1-0) was
' generated and 12 periodograms were calculated. The left-hand plots show the first halves of six periodograms of differing lengths
taken from the beginning of the data; lengths chosen were 64 point (upper), 128, 256, 512, 1024 and 2048 {(lower). The right-hand
side shows the first halves of six 256-point periodograms which were taken from six different starting points in the data (at the
beginning (upper ), point 64, 128, 256, 512, 1024 and 1280 (lower) )
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the variance by means of averaging procedures, and we
will consider this idea later.

4.2 Bias in the periodogram

Bias in an estimate means that the estimator is always
likely to yield an erroncous result irrespective of the extent
to which the variance is controlled. The estimate may be
consistently too big or too small due to bias. Now the
Fourier transform that underlies the periodogram is the
convolution of the ‘true’ spectrum (subject to variance)
with the Fourier transform of the window used to separate
the recording of data. We have seen that this leads to
Jeakage of energy from parts of the spectrum where it
‘should’ be to frequencies on either side; this occurs for
both the Fourier transform and the DFT. Leakage causes
the resulting transform to be in error and we interpret this
error as bias. The periodogram, calculated on the basis of
the Fourier transform or DFT, is thus a biased estimate of
the underlying power spectrum and this bias is caused by
the spectral leakage which results from the window process
used to extract the recording of data from the (actual or
assumed) underlying population signal.

The severity of the bias depends upon the spectral width
of the data window, as does the frequency resolution of the
periodogram (see Figs. 1 and 2). Now for good frequency
resolution and low bias we require a data window which is
narrow in the frequency domain, and this implies that the
window will be wide in the time domain; i.e. the extracted
data recording will be relatively long. We have already
seen that long data sequences lead to periodograms of
uncontrolled variance. A compromise thus exists between
the need for short data sequences to give acceptable
variance and the requirement for long data sequences to
give acceptable frequency-domain resolution and ade-
quately controlled bias.

Any solution tc the compromise between resolution,
bias and variance must be approached with great care and
the method adopted will depend on the nature of the data
it is required to analyse. In some instances the square
modulus of a single FFT will suffice as a power spectral
estimate and no further action will need to be taken. More
frequently, and particularly with signals containing a high
proportion of random energy, it will be necessary to
employ more complex methods, most of which involve
some type of averaging procedure to control the variance
and smooth the spectrum.

4.3 Smoothed spectral estimates

There are various ways by which the variance of a spec-
tral estimate can be reduced to effect a smoothing oper-
ation on the function and reader it more intelligible. The
simplest method consists of averaging adjacent samples in
the periodogram according to some weighting function, a
process known as windowing. More complicated methods
such as the Bartlett and Welch (WELcH, 1967) methods
involve segmenting the time-domain recording into sec-
tions, calculating a periodogram for each, and then
forming the average of a number of segmental periodo-
grams. Many of the more old-fashioned techniques involve
calculation and modification of the autocovariance func-
tion followed by estimation of the power spectrum by
means of the Wiener-Khintchine theorem (CHALLIS and
KITNEY, 1991). There are an enormous number of possible
permutations of technique, far too many to include in this
brief tutorial. We shall therefore set out the principal
details of each class of methods to the point where our
reader can confidently begin experimentation with some
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idea of the results which should be expected.

4.4 Windowing the periodogram

The discrete periodogram, calculated by means of the
FFT say, can be smoothed by averaging adjacent samples
either with equal weight or according to some weighting
function such as (%, 3, 1). The averaging process can be
carried out rapidly by means of a recursive operation on
the periodogram, using the methods of digital filtering
(CuaLLis and KITNEY, 1982; 19834; b) only now applied to
discrete frequency domain recordings instead of time-
domain sequences. The weighting function in frequency
space is known as the window, generally denoted W{w).
The new periodogram which results from the windowing
operation, the smoothed spectrum, is the convolution of
the original periodogram with the window function, i.e.

™

I(w) = 517«[ J: HQ)W (o ~ Q) dQ (12)

Although it might be clear from an intuitive point of view
that the smoother spectrum will have a reduced variance it
is difficult to derive a quantitative expression for variance
in a general way. OpPENHEIM and ScHAFER (1975), after
making certain assumptions which include the condition
that the window width is narrow by comparison with the
spread of variations in the true power spectrum P, (w),
lead to the following result:

var [I{w)] = I:—l—“ [ WHw) de var [Hw)]  (13)
2aN -

in the range 0 < w < 7. That is to say the variance of the

periodogram is improved by a factor proportional to the

mean square value of the window in frequency space. We

note that the frequency-domain window has an inverse

Fourier transform which is the discrete sequence given by

wim) = -2% Jln W(w)e'™ dw (14)

This leads to an alternative expression for the variance
improvement:

M1

1
var [I(w)] »~ [V y

¥ = (M- 1)

wz(m)] var [I(w)] (15)

where the extent of the time domain function is 2M — 1.
The variance improvement can therefore be expressed as
a factor proportional to the mean square value of the
inverse discrete Fourier transform of the frequency-domain
window. This variance improvement is again quoted for
the range 0 < o < n. Derivations for w =0 (DC) and
w = n (Nyquist frequency) yield different variance results
and will not be included in our discussion here; we do not
regard this as a serious omission because DC is removed
from most signals and finite components at the Nyquist
frequency would probably involve serious problems of alias.
An operation which averages over a number of spectral
lines will clearly limit the frequency resolution in the perio-
dogram as well as control its variance. The resolution
worsens as the window is made wider in frequency and the
bandwidth of the window cnables us to quantify this effect.
There are various definitions of bandwidth, and the sim-
plest is the frequency interval between the innermost zeros
of the function. Sometimes the half-power points of the
function are used, in line with basic ideas of frequency
response curves. Fig., 7 iflustrates the most common
window functions together with expressions for their band-
width (based on the interval between inner zeros) and an

May 1991




i2)

ew
> it
1ce
ter

(15)

1as
the
1ain
for
and
ults
not
ved
uist
lias.
tral
rio-
tion
‘the
fect.
sim-
eros
the
nCy
mnon
and-
i an

991

pproximate measure of the improvement in variance we
night expect from their use.

We should emphasise that in the majority of practical
ituations the investigator only need resort to fairly simple
functions, the gains to be had from the more complicated
~windows being marginal in this method.

var [ ()] = ;Z var [ {w)] (18)

The averaged periodogram is therefore a consistent esti-
mate of the power spectrum because as the number of
segments in the average is increased so the variance tends

rectangular

w(im) =1

Bartlett
w(m)=1-|m| /M

w{m)=ax +pcos[mwm/(M-1)]

|mj £M-1
=0 otherwise

bandwidth = 2@/M
VF=2M/N

|mjsM-1
=0 otherwise

_bandwidth= 4 /M
VF=2M/3N

Hanning
w(m)=0-5(1«cos[mm/(M-1)])

|msM-1
=0 otherwise

bandwidth= 3w/M
VF = 0-75M/N

jmj £M-1
=0 otherwise

bandwidth = 3w /M
VF = 2(x2+p2/2)MIN

. Kig.T Some common window functions that can be used to control variance in periodograms. The annotation adjacent to each trace gives

the window function w(m), the bandwidth as a measure of the frequency interval between main lobes of the Fourier transform of the
window, and the factor VF, which is a measure of the extent to which we might expect the use of the window to improve the

variance of the periodogram

45 Averaging the periodogram

The idea behind this method is that the time-domain
data recording is broken up into a number of equal length
segments and the periodogram of each is calculated. The
periodogram of the whole recording is then reckoned to be
the average of all the segmental periodograms. The
method is sometimes known as the Bartlett procedure after
its supposed originator. The N-point data sequence is
divided into K segments, each M samples long such that
N =KM. If the individual periodograms are to be
obtained by FFT then M must be an integer power of two
and K and N will be constrained accordingly. The Jjth
segment includes the data points x(n + (j — 1)M) for
0 < n< M — 1. The jth periodogram, normally calculated
as the square modulus FFT divided by M, is

M-1

L) ="1\'IZ Y x(n + (j — )M)e -on| (16)

n=0

K successive periodograms are averaged to form the
overall estimate of the power spectrum

1) :% S Liw) (17)

=1

¢ method assumes that the segment length M is such
at no components exist in the spectrum which are of a
W enough frequency to cause data in one segment to be
rrelated with data in another. This implies that the time-
main autocorvariance function is negligibly small for
ags of the order of and greater than M and that successive
mental periodograms are independent of each other.
result of this assumption of independence is that the
iance of the averaged periodogram varies inversely as
he number of segmental periodograms brought into the
rage. For normally distributed white spectrum random
nals for which the segments are independent as above it
1 be shown that:

<
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towards zero. While this is a most useful result we must
not neglect the fact that control of variance has been
achieved at the expense of worsened frequency resolution,
as this varies inversely as the recording length which, as we
have seen, is reduced by factor K. The minimum resolvable
frequency will be of the order of 2n/M, compared with

" 2n/KM for the unsegmented recording. We therefore com-

promise with our choice of K; we first choose segment
length M on the basis of our required resolution and then
fit in as many averages, K, either as were possible from our
initial recording length N or as were found necessary to
give adequately controlled variance. This latter can be
interpreted as a spectrum which is sufficiently smooth for
us to discern whatever features are required for the pur-
poses of any particular experiment. Some experimentation
with K and M will generally show the investigator what
are the best compromises.

The question of resolution in the frequency domain can
be approached more rigorously by considering the
frequency-domain window implied by the segmenting pro-
cedure. We note that each segment of data in the Bartlett
procedure had been extracted by multiplying by a rec-
tangular window in the time domain. We shall see that this
implies that each segmented periodogram was in fact the
convolution of the ‘underlying’ function with a frequency-
domain window of the form

sin wM/2 |?
sin w2

W(w) = [ (19)
The Bartlett procedure is the most simple case of the more
general method first proposed by WELCH (1967) which
combines the averaged periodogram idea with the use of
non-rectangular windows for extraction of the segments in
the time domain. We consider now some of the features of
this method.

As before an N-point data recording is broken up into
K segments each of length N. Each is multiplied by a
window function, which in the simplest case is rectangular
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but which would generally have more gradual transitions
at its edges such as one of the cosine tapers. The Fourier
transform of an M-point segment takes the form
M-1
X(w)= ) x(n)w(n)e " (20)
n=0
where w(n) is the time-domain data extraction window; it
is zero outside the range 0 < n < M — 1. As we would
expect X(w) is the frequency-domain convolution of the
‘underlying’ Fourier transform with the Fourier transform
of the window

X(w) = 51; J FQ)W(w — Q) dQ (21)
2
where
M-1 .
Wi{w) = ;0 w(n)e o (22)

and F(Q) represents the amplitude spectrum of the popu-
lation signal. The jth segmental periodogram is calculated
by taking the modulus squared of the Fourier transform
and dividing by M, as before, but with an additional
scaling factor equal to the mean squared value of the time-
domain window; this maintains the windowing operation
at unity gain. We have

M1

1
o) =351 T

x(n + (j — DMyw(n + (j — 1)M)e ~e" ’ 23)

or equivalently

1
Ifw) = 71 X fo) 24

where X (o) is the Fourier transform of the jth segment.
The scaling factor U is simply

1 M-1

U= i ";) w(n) (25)

and the overall spectral estimate is obtained by averaging
over K segments as before

1 K
lo)=¢ L 1) (6

The improvement in variance which results from the
method is shown by Welch to be approximately factor K,
again for idealised random signals which are normally dis-
tributed, of white spectrum and within which no significant
correlations exist between the segments.

The advantage of the non-rectangular windows of the
Welch method is that some extra control of bias and fre-
quency resolution can be had from careful tailoring of the
time-domain window shape. Welch shows that the
expected value of the averaged periodograms is the con-
volution of the ‘true’ power spectrum P, (w) with a
frequency-domain window which is the scaled square
modulus of the Fourier transform of the time-domain
window. That is

I(w) = % f " P_(QH(© — Q) dO @7

-1

where

H(®) = = | W) @70

234 Medical & Biological Engineering & Computing

and U is the scaling factor defined in eqgn. 25.

The principal advantage of the Welch method is that the
square modulus window H(w) cannot take negative values.
This prevents an anomalous biasing effect which occurs
with windows implied by some other procedures and
which sometimes results in negative values appearing at
some frequencies in the power spectral estimate. Such a
result would of course be meaningless and the spectrum of
which it was part would not be usable as evidence of activ-
ity in any realisable system.

8§ Power spectral estimates involving
the autocovariance function

We saw earlier (CHALLIS and KiTnEY, 1991) that the FT
of the autocovariance function is the power spectrum of a
continuous signal. This result is known as the Wiener-
Khintchine relationship after its originators. For a discrete
signal of unlimited duration a similar relationship applies.
The resulting spectrum is continuous and repeats at inter-
vals of the sampling frequency. Just as for discrete signals,
we regard the lags in the discrete autocovariance function
as being each of unit time and the sampling frequency is
consequently 2z rad s~!. We have also seen that the esti-
mation of the discrete autocovariance function on the basis
of a data recording of limited length leads to a biased
estimate of the function. Correction for this bias by linear
scaling leads to a serious increase in variance at the longer
lag intervals. The FFT can be used to calculate the esti-
mates of autocovariance and these can be achieved in
either a circular or a linear computation.

The question obviously arises as to how the investigator
should go about estimation of the power spectrum by
means of the discrete autocovariance function and, indeed,
should he/she bother at all with such a relatively compli-
cated route. Why not merely use the periodogram calcu-
lated directly using the FFT using one of the methods we
have already described? The autocovariance function was
used as an intermediate step in the estimation of power
spectra for many years before the advent of modern elec-
tronic computers and efficient algorithms such as the FFT.
It was fairly simple to calculate and as the result of the
calculation ‘grew’ lag by lag so the investigator could
easily see when further lags would no longer yield a signifi-
cantly useful contribution to the function. The number of
arithmetic operations, and consequently the time taken on
them, could be minimised.

The raw biased autocovariance estimate would give a
fairly clear indication of the distribution of energy in
random signal components and in the truly periodic deter-
ministic components. The approximate bandwidth and
power in the random components could be determined by
the width and height of the peak at zero lag and a measure
of the power in the deterministic components could be had
from their amplitude in the acef The power spectrum
could then be formally estimated by taking the cosine
transform of the acyf. This is of course equivalent to the
exponential Fourier transform because the acuf is an even
function consisting of cosine terms only. If s, (k) is the
autocovariance estimate of the n-point sequence we have

N—-1

1
Sxxlk) = N >

n=-—(N-1)

[x(m) — X][x(n + k) — X] (28)

The periodogram is then

N-1

l@)=> %

k=—(N-1)

s,.{k) cos wk (29}
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requirements of the particular experiment at hand. For
example some scaling could be carried out to correct for
bias (Fig. 8c) and the function could then be windowed out
at greater lags in order to de-emphasise those parts of it
which suffered most from the increase in bias (Fig. 8d).
Alternatively it may be required to use windows to
separate out the deterministic and random components for
separate analysis. In Figs. 8¢ and 8f this has been done

periodograms

%

w

8 Calculation of the periodogram (a) directly by FFT applied to the time-domain signal; (b) from the linear acvf; (c) from the
" linear acuf corrected for bias; (d) from (c) with the most variant portion of the acvf windowed out; (e) with emphasis on the
random components in the signal; (f) with emphasis on the deterministic componenis
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using a flat-topped cosine taper. The periodograms which
correspond to these autocovariance functions are shown
on the right-hand side of the figure. For convenience these
have been calculated by means of the FFT rather than the
cosine transform.

A few words on the detail of this step are appropriate
here. The acuf is defined as an even function of time and it
is centred on the zero lag point. On Fig. 8 only the right-
hand halves of the acyfs are plotted. Now implicit in the
DFT computation is the assumption that the tire-domain
recording repeats identically in time and the computer
memory array containing the acyf must be organised to
ensure that both positive and negative lag portions are
processed. They may be placed anywhere in the array
(Fig. 9) and the modulus of each complex output terms of
the DFT calculated to give the periodogram. If the input
to the DFT is organised so as to place the acyf with its
positive lag portion at the beginning and its negative lag
portion at the end of the array then the real part of the
DFT output will provide the periodogram estimates and
the imaginary parts should all be zero.

We now consider how the window applied to the acuf
has effect on the resulting periodogram. We shall restrict
our discussion to windows which have their maximum
pass at zero lag and are of course symmetrical about zero
lag. The result is quite simple; from our previous dis-
cussion on time and frequency domain equivalence we see
that multiplication by a window function in the lag time
domain implies that the resulting periodogram will be con-
volved with the Fourier transform of whatever window is
applied. Note that in this case the frequency-domain
window is not the square modulus function as was applic-
able to windows applied direct to time-domain data. 1t is
therefore important to ensure that the window chosen
does not have negative-valued sidelobes because these
could impart to the resulting spectral estimate a negative
bias sufficient to cause some negative power components.

Fig. 9 Possible positions of the acvf in the computer array before
calculations of the FFT
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To conclude this discussion we consider what windows
are implied when we do no more than compute the perio-
dogram on the basis of the biascd or unbiased acvf, with
1o extra shaping applied to it. We have shown earlier that ;
the acyf estimate is a biased version of the underlying |
population acyf, according to :

(30)
The resulting periodogram is
N-1 -
m=~(N-1) 4

This is the Fourier transform of a windowed autoco-
variance sequence. The window is triangular (sometimes
called a Bartlett window) and given by

w(n)ziil——l—%l] [m| <N
0 fm| =N {32)

The convolution in the frequency domain is with the
Fourier transform of this window which is given by

N-1
Wiky= Y |:1 - %Je‘j‘”"‘

m=—(N-1)
i 2
= — 3
M=y —% (33
2

We have seen that it is possible to correct for the bias in
the autocovariance sequence by linear scaling, although at
risk of increased variance at longer lags. The operation is

N
S my=———s,.dm 34y
() = Ty S (
The Fourier transform of s, (m), while suffering from the
increased variance in s (m), is equivalent to the Fourier
transform of a sample of the population autocovariance
sequence 7,,(m), which has been extracted by means of a

simple rectangular window, given by
wim) =1 fm| < N 5
0 |m|=N (35)

The equivalent frequency-domain window is the Fourier
transform of this, given by

sin B QN 1)] |
' (36)

o

This window can take negative values and can lead to
anomalous biasing in the final power spectral estimate.
Finally, we note that the window implied by our use of the
biased autocovariance sequence is identical in form to the
frequency-domain window which would be implied by our
calculation of the periodogram by direct Fourier trans
formation of the time-domain sequence, it being the squart;
modulus of the Fourier transform of the discrete rectangi®;
lar gate of N points duration. This we would expect:
because the two methods of arriving at the penodograms
are exactly equivalent to each other.

Wi(k) =
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WS This concludes our discussion of the classical methods of

0- power spectral estimation. We emphasise that all estimates
ith are a compromise between frequency resolution, bias and
1at yariance which result both from the statistical properties of
ng the input data and from the methods used to make the
estimate. Very many compromises between data length,
window procedures and averaging methods are possible
1 and many may yield equivalent results to each other. The
best way through this apparent jungle of possibilities is
30) probably to use the simplest methods to gain very approx-
jmate estimates of the general properties of the data and
then to gradually refine the technique to identify specific
fcatures which are believed to be associated with the

31 hypothesis under investigation.
This task is frequently made easier if the spectral
analysis procedures are tested on simulated data with a
co- known balance between deterministic and random com-
nes ponents. In this connection it is useful to have pro-
grammed on one’s computer system some basic tools
which can be used to generate simulated data; these
hould include the facility to generate sequences of random
data of known spectral properties, source distribution
32) hape and variance. These can be used in conjunction with
the deterministic function generation routines to generate data

which have similar (but better known) properties to those
ybtained in initial computations on the real test data. The
erformance of spectral estimation procedures can then be
ested rigorously before being applied to experimental
_data. In this way the analyst will gain greatly increased
onfidence in his/her estimates of the spectral properties of
nknown and frequently variant biclogical data.

There remains to consider frequency-domain methods
y which two signals can be compared by means of their
oint spectral power. In the final part of this paper we
onsider the coherence junction as a means of achieving
his comparison.

(34) 3 The concept of coherence
In an earlier section of this tutorial (CHALLIS and
the KITNEY, 1991) we have seen that the cross-power spectrum
irier s the frequency-domain equivalent to the cross-covariance
nce unction. Like its time-domain counterpart it is a measure
of a f the similarity between two signals and it expressed this
antitatively as the distribution of joint spectral power in
he frequency domain. The coherence function is also a
equency-domain measure of similarity between signals. It
(35) ers from the cross-power spectrum in that it is normal-
’ d to yield values between zero (signals uncorrelated) and
irier ty (signals identical). The function in its basic form is
omplex and defined as
ny((ll) = % (37)
(36) V Gl )G, ()
ere G, (w) is the cross-power spectrum at frequency w
ween signals x(¢) and y(t), and G, (w) and G, (w) are the
d to wer spectra (also known as autospectra) of x(z) and (1),
nate. pectively. More commonly used is the magnitude-
f the ared coherence (MSC) function, defined as
o the 2
[ G|
our - 2 X
ians' MSC = |C, (w)] G A)G() (38)
juare e have an appropriately composite pair of data record-
ngu- $ we could estimate G,,, G, and G,, by Fourier
xpect hods to obtain, at a particular frequency
rams : ’ '
| Gxx = (a +]b) ny = (C + .]d) ny = (a +]b)(C wld)
4991 dical & Biological Engineering & Computing

May 1991

If these expressions are substituted into eqn. 38 we arrive
at the (at first) confusing result that

| Cof) > = 1 for all @ (39
This is perhaps no surprise when we consider that the
cross-spectrum is merely a complex product of the two
constituent spectra, and that the coherence function is nor-
malised by placing a not dissimilar product in the denomi-
nator. Why then are coherence functions of use to the
analyst? The answer is that calculation of coherence by
means of averaged estimates based on segments of the
original signals indeed yields meaningful quantitative mea-
sures of similarity between them, and these measures take
values between zero and unity.

In a frequency-domain measure of similarity between
two signals we are interested in more than mercly the joint
presence of emergy at the same frequency in the two
recordings. This would of course be available from simple
cross-spectral estimates. The signal content of two record-
ings may change considerably with time. Particular fre-
quency components may wax and wane in amplitude and
the relative phase between components in the two channels
may alter with time. Noise may occur sporadically or con-
tinuously in one or both channels and new frequency com-
ponents, not regarded as noise, may arrive by additive
processes into the signals or as a result of nonlinear
changes in channel properties. The coherence function pro-
vides an analytical tool by which all of these changes can
be monitored and quantified in the frequency domain.
Attention is more generally focused on the MSC function
and we consider its calculation here.

The two data recordings which are to be compared are
broken up into N segments of equal length. The auto- and
cross-spectra are estimated on the basis of averages drawn
from the individual spectra of the segments. Typically, the
individual spectra are obtained by means of the FFT. If
X,(w) and Y () are the complex FFTs of the nth segment,
then

1 N
Gxx(w) = N 21 'X"(CO) Hz

1 N
Gu@) = ¥ L) (40)

1y
Guf) = ¥ X)¥20)

The segments may overlap (CARTER et al, 1973) to a
degree and the choice of segment length and number of
segments depends on the statistical constraints which char-
acterise the data and the analysis required of it. We have
seen that estimates of the power spectrum made on the
basis of the periodogram are inconsistent in that the bias
and variance of the estimate do not necessarily reduce as
longer data lengths are analysed. These uncertainties can
be reduced by estimating the periodogram using an
average of a larger number of short data segments.
However, the attainment of good spectral resolution in an
FFT operation requires fairly long data lengths as the
spacing between spectral lines is inversely proportional to
the (assumed) time-domain repetition period for the data.
There is thus a compromise required in the choice of
segment length: it must be long enough to provide ade-
quate frequency resolution and short enough to allow suf-
ficient segments in the average to control bias and
variance. In addition each segment must be extracted
using a time-domain window to control sidelobes in the
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frequency-domain functions and thereby limit the bias
which arises due to the resulting leakage.

The conflicting requirements of number of segments and
segment length can be alleviated to some extent by over-
lapping segments as this permits more averages to be
taken while maintaining the same frequency resolution.
This is only effective up to a point because the improve-
ment declines due to greater correlation between segments.
Computational overheads increase with increased overlap
and tradeoff exists between this overhead and the improve-
ments obtainable. CARTER et al. (1973) have shown theo-
retically and experimentally that for Hanning windowed
segments there is little point in employing overlap beyond
about 50 per cent.

The statistical properties of the MSC estimator have
been described by CARTER et al. (1973), who give expres-
sions for bias and variance that result from the use of the
segmented estimation procedure. Two approximations
useful for a number of segments greater than 32 are repro-
duced here; they assume an ideal Hanning window applied
to each segment and no overlap between segments. Both
signals are assumed to be zero-mean, stationary Gaussian
processes. If the MSC is y then the bias and variance are

bias = B(|71*) = (1 — |y|*)*/N
1/N?
21y Pt =1y PN

ly)? =0
0<ly’I<1

(41

These show clearly that the bias and variance of the esti-
mator are dependent on both the number of segments N
as well as on the true MSC value. Computed values are
listed in Table 1.

These results have been obtained for idealised data aver-
aged using a simple overlapping protocol. In many real

var = V(|y])) »

Table 1 Computed values of (a) bias
and (b) variance for the magnitude-
squared coherence function for a range
of coherence values and three different
ensemble sizes N = 32, 64 and 128.
Computations are based on the approx-
imate expressions given in the text

(a) Bias
Iy1? 32 64 128
00 0-0313 0-0156 0-0078
01 0-0253 0-0127 0-0063
0-2 0-0200 0-0100 0-0050
03 0-0153 0-0077 0-0038
0-4 0-0112 0-0056 0-0028
0-5 0-0078 0-0039 0-0020
0-6 0-0050 0-0025 0-0012
07 0-0028 0-0014 0-0007
08 0-0012 0-0006 0-0003
09 0-0003 0-0002 0-0001
1-0 0-0000 0-0000 0-0000
(b) Variance

[v]? 32 64 128
0-0 0-0010 0-0002 0-0001
01 0-0051 0-0025 0-0013
02 0-0080 0-0040 0-0020
03 0-0092 0:0046 0-0023
04 0-0090 0-0045 0-0022
0-5 0-0078 0-0039 0-0020
0-6 0-0060 0-0030 0-0015
07 0-0039 0-0020 0-0010
0-8 0-0020 0-0010 0-0005
09 00006 0-0003 0-0001
1-0 0-0000 0-0000 0-0000
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situations the methods used to average the constituent
spectra are more complicated than those given in the
above equations and those used by Carter et al. It is not
always possible to arrive analytically at measures of bias
and variance and frequently empirical methods are
employed to obtain such estimates. In the context of this
introductory paper it is more appropriate to consider the
basic features of a few averaging processes. Let the nth
periodogram be

X () = a,{0) + jb(w)

The autospectrum is built up using the following average:
N
NG (w) = ¥ | X, (@)
n=1

=a? + b?
+ a2 + b2

ai + b3

A% + By (42)

This method of addition is equivalent to the time-domain
operation of averaging the acyfs of the N segments. The
reader is warned that an average taken on the basis of the
separate real and imaginary components of each segmental
spectrum will have a totally different interpretation. The
operation consists of the following summation:

a, +jb,
+a2 +jb2

ay + jby
Ay + jBy @3)

Then G o) = (4y)* + (By)®

The operation preserves phase in the individual segments
and is equivalent to the computation of the periodogram
of the time-domain average of the segment recordings. It
causes much of the signal energy to be lost as most seg-
ments will be incoherent when lined up one below the
other.

A not unrelated argument applies to the estimation of
the cross-spectrum averaged over all of the response
epochs. The estimate could be made in two ways. If the
individual FFTs of a pair of segments are a,{w) + jb, (<)
and c,(w)+ jd(w) then the cross-spectrum for that
segment pair is G, (@) = (a,c, + b,d,) + jlb,c, — a,d,) =
g, + jh, say. This spectrum is the frequency-domain equiv-
alent of the circular cross-covariance function for the two
segments. It carries in its phase an imprint of the relative
lag between the two segments just as in the time domain
the ccof preserves such lag information. If we form the
averaged cross-spectrum thus:

NBxyN =g +]h1
+g, +jh,

gn + jhy
Gy +JjHy (44)
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we have the frequency-domain equivalent of adding
ogether all of the individual time domain ccufs. Clearly if
he phase relationships between the two component signals
n successive pairs of recording segments are not consistent
rom one segment to the next then addition in this way
ill lead to a reduction in the total value of the sum and
ence a reduced magnitude for the coherence function.
'his makes good sense as inconsistent time delays in suc-
essive segments will imply dissimilarity between the two
ignals. It 1s of course still possible to adopt a restrictive
pproach and to reduce the effect of variable delay as a
ontributor to coherence and this would imply addition of
- the following form:

g1 + hi
+g% + h?
gn + 3
Gi+ H}
“and
NG,,, = G} + H} (45)

m

H;l! RN

p 1231231231231 23123123
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n 123456785310 5 20

Fig. 10 An averaging scheme for the MSC function. The data are
broken up into 21 segments and the autospectra (see egn.
46) are formed on the basis of a phase-free average of all
21 subrecordings. The cross-spectra are obtained from a
two-stage process. Groups of three segmental cross-
spectra are averaged taking phase into account. The
seven-part averages are then themselves averaged with
phase discarded

M =

P=3

N =2
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The operation would yield a coherence estimate which is
sensitive to differing spectral content due to additive noise
or nonlinear effects but which is comparatively insensitive
to relative phase fluctuations. In some instances relative
phase between segments and between spectral components
may change rapidly in a manner which masks much simi-
larity between the two signals under examination. In this
case it may be sensible to perform averaging according to
eqn. 45 over a few segments and then to proceed with
further averaging over groups of segments according to
eqn. 44. Indeed considerable flexibility is available to the
analyst in the manner in which the averages are chosen
(Tick, 1967) and very frequently the benefits of experience
are required to design an adequate match between the
averaging protocol and the statistical properties of the
data on hand.

As an example of the averaging complexity which is
possible Fig. 10 shows diagramatically a pair of recordings
broken up into 21 segment pairs. These have been further
subdivided into groups of three pairs. The cross-power
spectrum would for example be estimated on the basis of a
two-stage averaging process, the first of which included
phase changes over the restricted range of the three seg-
ments. The second stage would then form an average of
the seven results of the first stage averaging and would not
include phase over the longer intervals. If a, + jb, and
¢, + jd, represent the FFTs of the nth segments in each of
the two signals the averaging scheme becomes

/M Zle([l/f’ drmpn-m+1 (@,¢, + b,d)]?

+ [P > p _ai1 (@d, — boc)]?)

[N Y01 (a7 + BN Y-, (2 + dD)]
{46)

where M = 7, N = 21 and P = 3. The process could under
certain requirements be further complicated by forming
the averaged MSC of a set of averages formed in the
manner shown above. There is a broad range of choice
and the ideas we have presented here really must only
touch the surface of this complex subject. We would
suggest that if the reader intends to make serious use of
coherence calculations a comprehensive study of relevant
literature is undertaken as a preliminary measure. We

Colw) =

Diagram of an array of electrodes placed on the human scalp for recording of visually evoked potentials, together with typical
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include here a Bibliography which will serve as useful
background material; they include the original work of
WIENER (1930) on the subject in 1930 and an excellent
review by Tick (1967).

No discussion of a technique is complete without an
example of its use. Fig. 11 shows a diagram of an array of

- " " % - b

electrodes place on the human scalp in an experiment
designed to record visually evoked potentials (VEPs). The
problem was to establish the extent to which background
(i.e. non-evoked) activity was consistently similar between
the several electrode chanmels: 128 segments of EEG
sampled at 128 Hz and each of length 1024 points were

3 3 " A & & " a &

—12 ] \/\/\_1_/3_‘ 174

ITE
3 -
S 4

3/5

116 2/6

0 frequency , Hz 32:0

Fig. 12 Magnitude squared coherence functions between pairs of electrodes in the montage shown in Fig. 11
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jsed to estimate the MSC between pairs of electrode chan-
sels. The results are shown in Fig. 12, and we see that
here is considerable variability in MSC across the avail-
ble-frequency band and between different electrode pairs.
similar exercise was carried out for the evoked potentials
hemselves and from the results of both studies it was
ossible to choose pairs of electrodes in which either the
Ps were coherent and the background was not or the
ackground activity was coherent in both channels and
1e EPs were not. Signals from appropriate channel pairs
ere¢ then combined in an adaptive noise-cancelling algo-
thm designed to enhance recognition of VEPs without
esort to the coherent average (Winski, 1986).

Conclusion

This paper concludes our series of three tutorials on
hat are termed the classical methods of signal analysis.
¢ have seen how signal recordings can be regarded as
mples of the activity of some underlying process and
ow they can be considered as combinations of random
d deterministic components. Their properties can be
timated and they can be compared to each other on the
asis of similarity of their individual properties or on the
asis of joint properties such as cross-covariance or coher-
ce functions. Description and comparison of signals can
¢ carried out in the time domain, or the frequency
omain, or both domains. Many operations in one domain
{time or frequency) are equivalent to other operations in
the other domain (i.e. frequency or time). All measures of
signal properties are regarded as estimates of some under-
lying process; these estimates must be based on compro-
mises between potential errors and uncertainties. This idea
nas been considered in detail for the case of the estimation
the power spectrum of a signal from a number of sample
recordings of the signal. We have shown that a number of
techniques are available which can be used to control the
compromise between frequency-domain resolution and
statistical bias on individual spectrum components on the
one hand, and increased uncertainty due to estimator
variance on the other. Both the properties of the source
data and the estimation technique employed affect the
eventual compromise that will be made. These ideas were
developed to include frequency-domain signal comparison
by means of coherence function analysis,

Tt has been found that in some cases it is not possible to
obtain an acceptable compromise between, for instance,
frequency resolution, bias and variance, and new tech-
niques are required. These generally fall under the title
modern spectrum analysis’ and will form the subject
atter for our next and final paper in this series.
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